1 / 25

Systèmes pervasifs, réseaux de capteurs, perception de l’environnement et applications.

Systèmes pervasifs, réseaux de capteurs, perception de l’environnement et applications. Bernard Pottier LabSTICC 24 Février 2016 (supports non triés). Journée instituts UBO. Wireless sensor network — histoire. 2007, May: Cornelia & Ciprian poster + demo accepted in INSS ’07, Germany

larsen
Download Presentation

Systèmes pervasifs, réseaux de capteurs, perception de l’environnement et applications.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Systèmes pervasifs, réseaux de capteurs, perception de l’environnement et applications. Bernard Pottier LabSTICC 24 Février 2016 (supports non triés) Journée instituts UBO

  2. Wireless sensor network — histoire • 2007, May: Cornelia & Ciprian poster + demo accepted in INSS’07, Germany • 2010 : Incas3.eu @ Assen, Nl & Forum du Développement durable, Brest, Ateliers Pucescom Ifremer et Irisa. Thèses Pierre-Yves, Eloi et Mahamadou, TI MSP430 • 2011 : RESSACS, Anglet, Hué, Ecole IFI Vietnam • 2012 : RESSACS, http://ecole-capteurs.univ-brest.fr • 2013 : cours et écoles en Algérie, USTH, Vietnam , • 2015 : ANR Persepteur, modèles canaux radio en ville (voir A.Bounceur) • 2015 : CPER Micas (iROMI) • 2016 : STIC Asie : modélisation et simulation pour l’observation de l’environnement

  3. STIC ASIE 2016-2017 • UBO / LabSTICC • CIRELA/BPPT Jakarta • IRD / IFI Hanoi • CTU / CANTHO • Modélisation et Simulation pour l’observation de l’Environnement, • Orientation outils logiciels, déploiement, gestion des données.

  4. Définition scientifique • Systèmes d’observation et de contrôle de l’environnement • Modélisation physique de la chose observée (insectes, pollutions, pluies) • Modélisation du dispositif d’observation (réseaux de capteurs) • Simulations conjointes et validation • Migrations possibles vers des outillages réels

  5. Compétences développées • Conception d’outils informatiques logiciels et matériels • Simulation parallèle à haute performance • Algorithmes distribués • Appel à des expertises disciplinaires (biologie, mécanique, chimie …)

  6. Contexte et applications • Relations internationales : Vietnam, Sénégal, Madagascar .. • Participation à des enjeux internationaux : • Supervision des changements climatiques et de leur impacts • Système d’observation Delta du Mékong, • Criquets en Afrique, • Nano satellite d’observation, menaces climatiques en France

  7. Ex1: Couvertures radio 2D.5 • Calculs sur le système cellulaire • Processus communicants • détection des obstacles • routes les plus courtes de cellule en cellule • algorithme parallèle log n profil source

  8. Ex2 :Modèles insectes (M.Traore) Modele vie du criquet, Population des cellules, Modele et simulation d’évolutions et dispersions géographiques

  9. Ex3 :Deploiement Mekong ?

  10. Ex4: Animations

  11. Sensing physical reality • Sensor networks report on physical world • Nodes are sensors • Edges are communication links Both synchronous, Both parallel Synthesis and simulation in coherence NetGen • Physical world is complex, heterogeneous • Nodes are cells with possible geolocation • Edges are physical influences PickCell

  12. Approach in physical modelling • Anywhere, any scale, including mobiles and nano satellites • Physical world is represented by cells in a 2D.5 space : lon, lat, elevation • Cells are grouped into cell systems depending on their characteristics • Cell systems have internal connectivity and behaviour according to cellular automata paradigm • http://wsn.univ-brest.fr/svn/coursCyber/coursCyber.pdf

  13. Mouse left button move a map Rotate wheel increase or decrease size shift to get a crosshair cursor copy mouse geo location draw lines, grids, distribute sensors build cell systems Browsing maps QuickMap (P-Y Lucas)

  14. Map system interactions • A paste in another viewer send you to your mouse location • Example of Apple map • Select other map systems as shown in menu:

  15. View exported from the browser Grid follows arbitrary cell size (50@50) Sensor positions can be specified interactively Cell system: segmentation resolution PickCell

  16. 8x8 resolution Get grid cells migrate to classification tool Migrate to classification tool resolution classification

  17. Classification 2x2x2 in RGB • Text window presents cell location (top-left) • The bottom window presents result of class analysis, RGB in each cell. • Selected class is 7, for 2x2x2 partition

  18. Getting more information • Text utility allows to • save on files • export to a service • import additional information to fit cells

  19. Viewing the cell system • Presentation as map or photo, display cells over picture. • Google content produced from a web site in USA

  20. Example : elevations • File load : load annotated file in text utility • Analyze parse and load data in the cell system.

  21. Exporting cell systems • Classification use criteria and grain. Divider = 1 select the whole system. • Class selection export a class system organization based on a connectivity • Data file is also exported with cell contents • Occam, or CUDA syntaxes.

  22. Sample data file structure • data7.occ comments: • Cell array is 4984 large • 1st cell is located at 60@12 • elevation is 27.2 m • lon is 49.3 lat is -12.00 • 8x8 RGB pixels are listed • copy paste lon lat in Apple map DATA TYPE CellPosition RECORD INT x,y: -- cell position REAL64 longitude,latitude,elevation: : VAL [ 4984] CellArray Cells IS [ [ [ 60, 12, 49.305953979492, -12.007084584179, 27.200000762939] , [ [ 8, 8] , [ [240,237,229]

  23. NetGen manages sensor networks AND cell systems Select Occam generation watch a file called cellNetwork7.occ Preparing a Simulation The whole Occam program has 3 parts: cellNetwork7.occ is Cell system organization data7.occ is Cell data, including x,y,z node-test-include.occ is cell behaviour

  24. Compile: kroc -lcourse cellNetwork7.occ Execute: ./cellNetwork7 > cellNetwork7.trace.text Sample at http://wsn.univ-brest.fr/pottier/diego.zip Trace for computation of 3D bounding boxes by VN1 cellular systems Compile and simulate Id Lon Lat Elev Lon/Lat/Elev cell systems bounding boxes 130 49.17995453 -12.15412971 0.00 0.00 296.20 49.16 49.42 -12.36 -12.14 116 49.33444977 -12.13734783 24.80 0.00 296.20 49.16 49.42 -12.36 -12.14 9 49.36878204 -12.28834656 33.50 0.00 296.20 49.16 49.42 -12.36 -12.14 Low Higher

  25. Things coming • Radio signal estimation using cellular automata • Animations • Physical simulation of natural phenomena (atmosphere, biology, ground) • Nano satellite for sensor fields

More Related