1 / 21

6.6 BASIC PROPORTIONALITY THEOREM

6.6 BASIC PROPORTIONALITY THEOREM. BASIC PROPORTIONALITY THEOREM. If a line intersects two sides of a triangle and is parallel to the third side, then it divides the first two sides proportionally. RESTATEMENT OF THE THEOREM. B.

larue
Download Presentation

6.6 BASIC PROPORTIONALITY THEOREM

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 6.6 BASIC PROPORTIONALITY THEOREM

  2. BASIC PROPORTIONALITY THEOREM • If a line intersects two sides of a triangle and is parallel to the third side, then it divides the first two sides proportionally.

  3. RESTATEMENT OF THE THEOREM B • If a line (EF) intersects two sides ( AB & CB) of a triangle (ABC) and is parallel to the third side( AC ), then it divides the first two sides proportionally. • Thus, E F C A

  4. Converse of the Triangle Proportionality Theorem B • If a line divides two sides of a triangle proportionally, then it is parallel to the third side. E F C A

  5. Parallel Lines Proportionality Theorem • If three parallel lines intersect two transversals, then they divide the transversals proportionally.

  6. Practice with Parallels

  7. VERIFYING A PROPORTIONS( an example) B 1. BE : EA = BF : FC • 15 : 5 = 12 : 4 • By simplifying, • 3 : 1 = 3 : 1 15 12 6 E F 4 5 8 C A

  8. VERIFYING A PROPORTIONS B 2. BE : BA = BF : BC • 15 : 20 = 12 : 16 • By simplifying, • 3 : 4 = 3 : 4 15 12 6 E F 4 5 8 C A

  9. VERIFYING A PROPORTIONS B 3. BA : EA = BC : FC • 20 : 5 = 16 : 4 • By simplifying, • 4 : 1 = 4 : 1 15 12 6 E F 4 5 8 C A

  10. VERIFYING A PROPORTIONS B 4. BE : BF = EA : FC • 15 : 12 = 5 : 4 • By simplifying, • 5 : 4 = 5 : 4 15 12 6 E F 4 5 8 C A

  11. VERIFYING A PROPORTIONS B 5. FC : EA = BC : BA • 4 : 5 = 16 : 20 • By simplifying, • 4 : 5 = 4 : 5 15 12 6 E F 4 5 8 C A

  12. VERIFYING A PROPORTIONS B 6. EF : AC = BF : BC • 6 : 8 = 12 : 16 • By simplifying, • 3 : 4 = 3 : 4 15 12 6 E F 4 5 8 C A

  13. VERIFYING A PROPORTIONS B 6. EF : AC = BE : BA • 6 : 8 = 15 : 20 • By simplifying, • 3 : 4 = 3 : 4 15 12 6 E F 4 5 8 C A

  14. Exercises • GIVEN: DE // BC, • AD = 9, AE = 12, DE = 10,DB = 18. • Find, • BC, AC and CE. A 9 12 D E 10 18 C B

  15. Solution • Find BC, • BC : DE = BA : DA • BC : 10 = 27 : 9 or • BC : 10 = 3 : 1 • Applying principle of proportion • BC(1) = 10(3) • BC = 30 A 9 12 D E 10 18 30 C B

  16. Solution • Find AC, • AC : AE = BA : DA • AC : 12 = 27 : 9 or • AC : 12 = 3 : 1 • Applying principle of proportion • AC(1) = 12(3) • AC = 36 A 9 12 D E 10 18 C B

  17. Solution • Find CE, • CE : AE = BD : DA • CE : 12 = 18 : 9 or • CE : 12 = 2 : 1 • Applying principle of proportion • CE(1) = 12(2) • CE = 24 A 9 12 D E 10 24 18 C B

  18. Solution • Another way to find CE, • CE = AC - AE • Hence, AC =36, then • CE = 36 - 12 • CE = 24 A 9 12 D E 10 24 18 C B

  19. Quiz • Solve the following problem. Show your solution.( one –half crosswise) • 1. Uncle Tom plans to divide an 80- meter rope into three pieces in the ratio 3 : 5 : 8. what will be the length of each piece?

  20. QUIZ • 2. In the figure, find the values of x and y. 30 y 15 12 x 10

  21. Assignment

More Related