460 likes | 671 Views
ROSITA. ROSITA ABRIXAS on ISS. RO entgen S urvey with an I maging T elescope A rray. Experimentvorstellung MPE 4.5.2001. Basic Scientific Idea. To extend the ROSAT survey up to 15 keV. X-ray Surveys. Survey. Pointing. ROSAT. ROSAT. 0.1-2 keV. ROSITA. XMM/Chandra. 0.5-15 keV.
E N D
ROSITA ROSITA ABRIXAS on ISS ROentgen Survey with an Imaging Telescope Array Experimentvorstellung MPE 4.5.2001
Basic Scientific Idea To extend the ROSAT survey up to 15 keV
X-ray Surveys Survey Pointing ROSAT ROSAT 0.1-2 keV ROSITA XMM/Chandra 0.5-15 keV
ROSITA Survey 100 x 10000 x • All-Sky Survey • 3 Years Mission Time • S0.5-2=5.7 x 10-14 • S2-10 =1.7 x 10-13 • 42000 deg2 • NAGN=240,000 (0.5-2) / 50,000(2-10) • NCL =10,000 ROSITA Survey has two orders of magnitude higher sensitivity and angular resolution than previous survey in the same band.
Scientific Goals NGC 6240 QSO average (Elvis et al.) ROSAT ROSITA ROSITA CMB CIB COB NGC 6240 ROSAT CXB • Absorbed AGN and the X-ray background
HEAO-1 GRO MEGA IRAS 2MASS z=0.2 ROSAT FIRST ROSITA z=1 SDSS Chandra/XMM Deep Field z=5 FIRST (VLA) Elvis QSO template PLANCK NGC 6240
Scientific Goals Star formation vs Black Hole activity „NGC6240“ Steidel et al., 1999 Hasinger et al., 1999 0.5-2 keV (ROSAT) • Absorbed AGN and the X-ray background • Cosmological Evolutionof AGN QSOs Seyfert Galaxies Starburst Galaxies What is the history of obscuration in the Universe? ROSITA needed as a local anchor to study evolution
Scientific Goals ROSAT 0.1-2.4 keV ROSITA Clusters(expected) 20 cts ROSAT Clusters (already identified) 40 cts • Absorbed AGN and the X-ray background • Cosmological Evolutionof AGN • Clusters of Galaxies Clusters have harder X-ray spectra than AGN and ROSITA has sharper point-spread function than ROSAT => Clusters more easily identifiable.
Evolution of Structure Klypin, Kravtsov, Gottlöber
Large-Scale Structure T<105K 105<T<107K T>107K Cen & Ostriker 1999, ApJ 514, 1
ROSAT Cluster Surveys Böhringer et al., 2000a-c; Collins et al., 2000; Sckuecker et al., 2000
3D-structure of clusters • Blue: Clusters in the • plane perpendicular • to the gal. Plane • (lII = 90 –270o) • Green: Clusters in • the foreground of • this plane • Need to break through the zone of avoidance!
XMM: Cluster on Galactic Plane Nevalainen et al., 2001
Large Nearby Clusters • Unlimited field-of-view • much lower particle • background than XMM • => ROSITA can determine temperature and metallicity out to much larger radii
Scientific Goals • Absorbed AGN and the X-ray background • Cosmological Evolutionof AGN • Clusters of Galaxies • Galactic X-ray emission
Creation of the elements Detailed Chemistry and plasma diagnostics possible with CCD resolution
Embedded Protostars Chandra Orion HST (visual) VLT (JHK) Look for Taurus/Auriga, Lupus ...
Scientific Goals • Absorbed AGN and the X-ray background • Cosmological Evolutionof AGN • Clusters of Galaxies • Galactic X-ray emission • Monitoring of variable X-ray sources • Gamma Ray Bursts • etc.
ABRIXAS Idea ABRIXAS 7 x 90 cm2 27 Shells f = 160 cm XMM 2000 cm2 58 Shells f = 750 cm MPE’s pn-CCD 6 x 6 cm2
ABRIXAS Field of Views 7 60 arcmin 7.5° separation
Effective Area Gold /Nickel (ROSITA) Gold (ABRIXAS)
MPE‘s Detector Development pn-CCD (XMM) XEUS10y 2001 advanced pn-CCD DEPFET pixel device
New Detector Concepts CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX FramestoreArea FramestoreArea FramestoreArea FramestoreArea FramestoreArea FramestoreArea FramestoreArea
New Detector Concepts CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX FramestoreArea FramestoreArea FramestoreArea FramestoreArea FramestoreArea FramestoreArea FramestoreArea
New Detector Concepts CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX FramestoreArea FramestoreArea FramestoreArea FramestoreArea FramestoreArea FramestoreArea FramestoreArea
New Detector Concepts CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX CMX FramestoreArea FramestoreArea FramestoreArea FramestoreArea FramestoreArea FramestoreArea FramestoreArea
ROSITA Field of Views 7 60 arcmin 4° separation
Aluminum filter Deteiled thermal and mechanical design still under engineering study
ROSITA on ISS ISS flies like an airplane ideally suited for a survey
ROSITA viewing cone Flight direction
Distanzplots für ESA-Modell Schwenk 60 Zenitdistanzdes TeleskopsZenitdistanz der Sonne Sonnendistanz des Teleskops 3 Jahre
ISS tradeoff • Pro: • no attitude control • simple power supply • no antenna, transmitter • simple safe mode • commercial electronics • easy uplink, accommodation • Con: • viewing constraints • contamination? • limited telemetry? • mission life time • more complicated cooling • man-rating
Currently... pre-phase A study with industry (KT) (mission analysis, accommodation, contamination etc.)
Currently... pre-phase A study with industry (KT) (mission analysis, accommodation, contamination etc.) accommodation on ISS (location, uplink, collaborations)
Currently... pre-phase A study with industry (KT)(mission analysis, accommodation, contamination etc.) accommodation on ISS (location, uplink, collaborations) new instrument concepts (smaller pixels, faster readout)
Timing • ESA Columbus module > 2005 • ROSITA detector development > 2005 • Launch + Mission 2007-2009
Summary (1) Field of View 7 60 arcmin total 5.5 deg2 Angular Resolution ~ 30 arcsec Mision Duration 3 years Average Exposure ~ 9.000 sec Sensitivity ~ 610-14 erg cm-2 s-1 Number of Sources 240.000 (0.5 – 2 keV) 360.000 (0.5 – 7 keV) 50.000 (2 – 7 keV) 100 times more sensitive than HEAO-1 (Piccinnotti)
Summary (2) • compared to HEAO-1: • imaging, angular resolution x100 • sensitivity x100 • compared to ROSAT: • higher energy range • better angular resolution • better energy resolution • compared to ABRIXAS: • larger mirror area (Nickel coating) • better low-energy sensitivity (Al filter) • no FOV overlap (no ghost images) • detector technology demonstration for XEUS • scientific use for the Space Station