1 / 7

Légköri jelenségek

Légköri jelenségek. Főn, frontok, fény és hangtünemények.

latoya
Download Presentation

Légköri jelenségek

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Légköri jelenségek Főn, frontok, fény és hangtünemények

  2. A főnt száraz és meleg bukószélként jellemezhetjük. Magashegységek környezetében alakul ki, amelynek egyik (luv) oldalán az érkező levegő felfelé kényszerül, lehűl és nedvességtartamát a hegy ezen oldalán adja ki. A levegő a gerincen átbukva, immáron kiszáradva a másik (lee) oldalon leáramlik, felmelegszik és ezáltal relatív nedvessége jelentősen lecsökken (lásd relatív nedvesség). Jelenlétére a hegységgel párhuzamosan kialakuló lecsiszolt felhőformák (pl. lencse formájú felhők, latinul lenticularisok) utalhatnak. Európában legismertebb példája az Alpok mentén figyelhető meg, itt a déli főnként nevezett esetben a dél felől érkező levegő a hegygerinceken átbukva a hegység északi oldalán idézi elő ezt a száraz, meleg szelet. A főnös hatás nálunk az Alpokalján is megfigyelhető kisebb mértékben nyugatias, délnyugatias szél esetén. A főn

  3. Halo jelenség A halo (görögből, ἅλως) egy a Nap vagy a Hold körül megjelenő optikai jelenség. Több típusa létezik, azonban mindet az 8-12 km magasban képződő fátyol- és pehelyfelhőkben levő jégkristályok okozzák a felső troposzférában. A kristályok alakja és különös rendeződése, valamint a fénysugarak beesési szöge egyaránt felelős a megfigyelt halo típusáért. A fénysugarak visszaverődnek és megtörnek, valamint szóródhatnak, mint a szivárvány keletkezésekor. A jelenség lehet rövidke (pár másodperces), vagy tarthat több órán át.

  4. A föld felszínén levő néhány deciméter vastagságú levegőréteg a felette elhelyezkedő rétegeknél erősebb felmelegedése az oka a légköri tükröződés kialakulásának. Ez a hőmérséklet-különbség 5–15 °C-ot is elérhet, hatására az alsó légréteg sűrűsége ritkább lesz, fénytörő képessége lecsökken. Ekkor a levegő legsűrűbb rétege nem a földfelszínen van, hanem az erőteljesebben felmelegedett réteg felett. E réteg határán teljes visszaverődés is kialakulhat. Ez okozza a tükröződésre jellemző és sokszor látható csillogást, ami víztükör látszatát kelti. A légköri tükröződés során kialakuló tárgyak képének elhelyezkedése szerint van: Alsó tükröződésű, amikor a kép a tárgy valódi helye alatt jelenik meg. Felső tükröződésű, amikor a kép a tárgy valódi helye felett alakul ki. Oldalsó tükröződésű, amikor az mellette képződik. A délibáb jelensége az alsó tükröződés leggyakoribb formája. Délibáb

  5. Szivárvány A szivárvány akkor alakul ki, ha a levegőben lévő vízcseppeket a napfény alacsony szögből éri. Akkor a leglátványosabb a jelenség, ha az égbolt felét még felhők borítják, a szemlélő pedig a napnak háttal áll. Így a kialakuló szivárvány élesen elválik a mögötte lévő sötétebb háttértől. A szivárvány színeit a fehér fény szétszóródása okozza, amint az áthalad az esőcseppeken. A fény először az esőcsepp felületén törik meg, az esőcsepp túloldalán visszaverődik, majd kilépéskor ismét törést szenved. Ezt azt eredményezi, hogy igen változatos szögben léphet ki a fény, a legerősebb 40-42° körül távozik. A szög független a csepp méretétől, számít viszont a víz törésmutatója. A tengervíznek magasabb a törésmutatója (erősebben törik meg benne a fény) mint az esővíznek, így a tenger fölött kialakuló szivárványnak kisebb a sugara, mint a szárazföld fölöttinek. Ez a különbség szabad szemmel is látható.

  6. A villám nagyenergiájú, jellemzően természetes légkörikisülés. Keletkezhet felhő-felhő és felhő-föld között. A villám áramerőssége a 20-30 000 ampert is eléri, kivételes esetekben meghaladhatja a 300 000 ampert is. A villám elektromos gázkisülés, amely a felhők között, vagy a talaj és felhők között jön létre. Többnyire vonalas szerkezetű, de van felületi villám is, amely a felhők felületén keletkezik. Ritkább jelenség a gömbvillám. A villám keletkezése a felhők vízcseppjeinek, jégkristályainak súrlódására, széttöredezésére vezethetõ vissza. A tulajdonképpeni villámot elõvillám vezeti be, amely több lépésben ionizálja a levegőt, és így egyre nagyobb szakaszát vezetõvé teszi. Eközben a földfelületrõl (vagy az ellentétes előjelű elektromossággal feltöltött felhő felől), fõként a kiemelkedõ részekbõl megindul az ellentétes előjelű elektromosság áramlása a felhő felé. Ugyanazon az ionizált légcsatornán több villám is áthaladhat. A kisülésben szállított töltésmennyiség mindössze 1-2 C, de az igen rövid kisülési időtartam miatt 30-40 000 A-es áramerõsség lép fel. Villámlás

  7. Égzengés A villámok felhevítik a levegőt, amely hirtelen kitágul és összeütközik a környezõ légtömegekkel s ez nagy robajjal jár. Miért nem villámlik és dörög egyszerre? Azért, mert a fény és a hang terjedési sebessége különböző. Ugyanazt a távolságot a fény gyorsabban teszi meg, ezért látjuk elõször a villámlást, s csak ezután halljuk a dörgést. Ha akarunk, számolhatunk is. Minden másodperc a villámlást követően, ám az égzengést megelőzően a hang sebessége végett kb 340 métert jelent. A vihar centruma (tapasztalat szerint) így is mérhető.

More Related