1 / 33

數位影像中熵的計算與應用

數位影像中熵的計算與應用. 義守大學 資訊工程學系 黃健興. Outline. Entropy Definition Entropy of images Applications Visual Surveillance System Background Extraction Conclusions. Concept of Entropy. Rudolf Julius Emanuel Clausius , 1864 化學及熱力學 測量在動力學方面不能做功的能量總數 計算一個系統中的失序現象 描述系統狀態的函數 經常用熵的參考值和變化量進行分析比較.

Download Presentation

數位影像中熵的計算與應用

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 數位影像中熵的計算與應用 義守大學 資訊工程學系 黃健興

  2. Outline • Entropy • Definition • Entropy of images • Applications • Visual Surveillance System • Background Extraction • Conclusions

  3. Concept of Entropy • Rudolf Julius Emanuel Clausius , 1864 • 化學及熱力學 • 測量在動力學方面不能做功的能量總數 • 計算一個系統中的失序現象 • 描述系統狀態的函數 • 經常用熵的參考值和變化量進行分析比較

  4. Information Theory • Claude Elwood Shannon , 1948 • 運用機率論與數理統計的方法研究資訊 • 編碼學 • 密碼學與密碼分析學 • 數據傳輸 • 數據壓縮 • 檢測理論 • 估計理論 • 數據加密

  5. Definition • E is the expected value, • I is the information content of X. • p denotes the probability mass function of X

  6. Advantage • Whole Image • M×N Matrix • Histogram • N×1 Vector • Entropy • Single value

  7. Entropy of Image • Pixel Color • Pixel Distribution • Horizontal • Vertical • Texture

  8. The Statistic of gray-level

  9. Position Information • Normalize the size of image • Edge Detection • Sobel • Canny • Horizontal Projection • Vertical Projection

  10. Sobel Edge Detection • Sobel Filter

  11. Sobel Edge Detection(cont.)

  12. Sobel Edge Detection(cont.)

  13. 0 240 Horizontal Projection

  14. Horizontal Projection(cont.)

  15. 0 320 Vertical Projection

  16. Vertical Projection(cont.)

  17. Local Binary Pattern • Pattern Texture • Pattern • Center Pixel gc • Surrounding Pixel gi(i=0, 1,…,p-1) • Label

  18. Local Binary Pattern(cont.)

  19. Definition • E is the expected value, • I is the information content of X. • p denotes the probability mass function of X

  20. Applications • Visual Surveillance System • variance of video information • Background Extraction • Block for pixel

  21. F 60 F 63 F 2 F 20 F 45 F 68 F 69 Visual Surveillance System

  22. Visual Surveillance System

  23. Gray Prediction – GM(1,1)

  24. Gray Prediction – GM(1,1) (cont.) • Step 1: • Step 2: • Step 3:

  25. Gray Prediction – GM(1,1) (cont.) • Step 4: • Step 5:

  26. Gray Prediction – GM(1,1) (cont.) • Step 6: • Step 7:

  27. Visual Surveillance System

  28. Visual Surveillance System

  29. Background Extraction • Non-recursive approaches • Selective update using temporal averaging • Selective update using temporal median • Selective update using non-foreground pixels • Non-parametric model • Time Interval (It-L,It-L+1,It-1) • Probability Density Function

  30. Background Extraction • Recursive approaches • Kalman filter • Mixture of Gaussians (MoG) • Parametric model • Matching • Updata

  31. Improved Method • Treat the n×n block as a pixel

  32. Improved Method(cont.)

  33. Conclusions • Reduce Memory Size • Enhanced Performance • Quantize the content of image • Judgment of the variance

More Related