1 / 116

Challenges for Discrete Mathematics and Theoretical Computer Science in Homeland Security

Challenges for Discrete Mathematics and Theoretical Computer Science in Homeland Security. Great concern about the deliberate introduction of diseases by bioterrorists has led to new challenges for mathematical scientists. smallpox. Waiting on line to get smallpox vaccine during

laurenn
Download Presentation

Challenges for Discrete Mathematics and Theoretical Computer Science in Homeland Security

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Challenges for Discrete Mathematicsand Theoretical Computer Sciencein Homeland Security

  2. Great concern about the deliberate introduction of diseases by bioterrorists has led to new challenges for mathematical scientists. smallpox

  3. Waiting on line to get smallpox vaccine during New York City smallpox epidemic Bioterrorism issues are typical of many homeland security issues. This talk will emphasize bioterrorism, but many of the “messages” apply to homeland security in general.

  4. Outline 1. The role of mathematical sciences in the fight for homeland security and against bioterrorism. 2. Methods of computational and mathematical epidemiology 2a. Other areas of mathematical sciences 2b. Discrete math and theoretical CS 3. Graph-theoretical models of spread and control of disease

  5. Dealing with bioterrorism requires detailed planning of preventive measures and responses. Both require precise reasoning and extensive analysis.

  6. Understanding infectious systems requires being able to reason about highly complex biological systems, with hundreds of demographic and epidemiological variables. Intuition alone is insufficient to fully understand the dynamics of such systems.

  7. Experimentation or field trials are often prohibitively expensive or unethical and do not always lead to fundamental understanding. Therefore, mathematical modeling becomes an important experimental and analytical tool.

  8. Mathematical models have become important tools in analyzing the spread and control of infectious diseases and plans for defense against bioterrorist attacks, especially when combined with powerful, modern computer methods for analyzing and/or simulating the models.

  9. What Can Math Models Do For Us?

  10. What Can Math Models Do For Us? Sharpen our understanding of fundamental processes Compare alternative policies and interventions Help make decisions. Prepare responses to bioterrorist attacks. Provide a guide for training exercises and scenario development. Guide risk assessment. Predict future trends.

  11. What are the challenges for mathematical scientists in the defense against disease? This question led DIMACS, the Center for Discrete Mathematics and Theoretical Computer Science, to launch a “special focus” on this topic. Post-September 11 events soon led to an emphasis on bioterrorism.

  12. DIMACS Special Focus on Computational and Mathematical Epidemiology 2002-2005 Anthrax

  13. Methods of Math. and Comp. Epi. Math. models of infectious diseases go back to Daniel Bernoulli’s mathematical analysis of smallpox in 1760.

  14. Hundreds of math. models since have: highlighted concepts like core population in STD’s;

  15. Made explicit concepts such as herd immunity for vaccination policies;

  16. Led to insights about drug resistance, rate of spread of infection, epidemic trends, effects of different kinds of treatments.

  17. The size and overwhelming complexity of modern epidemiological problems -- and in particular the defense against bioterrorism -- calls for new approaches and tools.

  18. The Methods of Mathematical and Computational Epidemiology Statistical Methods long history in epidemiology changing due to large data sets involved Dynamical Systems model host-pathogen systems, disease spread difference and differential equations little systematic use of today’s powerful computational methods

  19. The Methods of Mathematical and Computational Epidemiology Probabilistic Methods stochastic processes, random walks, percolation, Markov chain Monte Carlo methods simulation need to bring in more powerful computational tools

  20. Discrete Math. and Theoretical Computer Science Many fields of science, in particular molecular biology, have made extensive use of DM broadly defined.

  21. Discrete Math. and Theoretical Computer Science Cont’d Especially useful have been those tools that make use of the algorithms, models, and concepts of TCS. These tools remain largely unused and unknown in epidemiology and even mathematical epidemiology.

  22. DM and TCS Continued These tools are made especially relevant to epidemiology because of: Geographic Information Systems

  23. DM and TCS Continued Availability of large and disparate computerized databases on subjects relating to disease and the relevance of modern methods of data mining.

  24. DM and TCS Continued Availability of large and disparate computerized databases on subjects relating to disease and the relevance of modern methods of data mining: Issues involve detection surveillance (monitoring) streaming data analysis clustering visualization of data

  25. DM and TCS Continued The increasing importance of an evolutionary point of view in epidemiology and the relevance of DM/TCS methods of phylogenetic tree reconstruction.

  26. DM and TCS Continued The increasing importance of an evolutionary point of view in epidemiology and the relevance of DM/TCS methods of phylogenetic tree reconstruction. Heavy use of DM in phylogenetic tree reconstruction Might help in identification of source of an infectious agent

  27. A Sampling of What is Happening at DIMACS “Working Group” on Mathematical Sciences Challenges in Defense Against Bioterrorism Working Group on Disease Surveillance and Detection Working Group on Vaccination Strategies Computer Security: W.G. on Analogies between Computer Viruses and Biological Viruses

  28. A Sampling of What is Happening at DIMACS Research Project on Monitoring Message Streams Research Project on Sharing Information between Databases Special Focus on Communications Security Special Focus on Computational and Mathematical Epidemiology

  29. Models of the Spread and Control of Disease through Social Networks • Diseases are spread through social networks. • This is especially relevant to sexually transmitted diseases such as AIDS. • “Contact tracing” is an important part of any strategy to combat outbreaks of diseases such as smallpox, whether naturally occurring or resulting from bioterrorist attacks.

  30. The Basic Model Social Network = Graph Vertices = People Edges = contact State of a Vertex: simplest model: 1 if infected, 0 if not infected (SI Model) More complex models: SI, SEI, SEIR, etc. S = susceptible, E = exposed, I = infected, R = recovered (or removed)

  31. More About States Once you are infected, can you be cured? If you are cured, do you become immune or can you re-enter the infected state? We can build a digraph reflecting the possible ways to move from state to state in the model.

  32. The State Diagram for a Smallpox Model The following diagram is from a Kaplan-Craft-Wein (2002) model for comparing alternative responses to a smallpox attack. This is being considered by the CDC and Office of Homeland Security.

  33. The Stages Row 1: “Untraced” and in various stages of susceptibility or infectiousness. Row 2: Traced and in various stages of the queue for vaccination. Row 3: Unsuccessfully vaccinated and in various stages of infectiousness. Row 4: Successfully vaccinated; dead

  34. Moving From State to State Let si(t) give the state of vertex i at time t. Two states 0 and 1. Times are discrete: t = 0, 1, 2, …

  35. Majority Processes Basic Majority Process: You change your state at time t+1 if a majority of your neighbors have the opposite state at time t. (No change in case of “ties”) Useful in models of spread of opinion. Disease interpretation? Cure if majority of your neighbors are uninfected. Does this make sense?

  36. Majority Processes II Irreversible Majority Process: You change your state from 0 to 1 at time t+1 if a majority of your neighbors have state 1 at time t. You never leave state 1. (No change in case of “ties”) Disease interpretation? Infected if sufficiently many of your neighbors are infected.

  37. Basic Majority Process

  38. Irreversible Majority Process

  39. Aside: Distributed Computing Majority processes are studied in distributed computing. Goal: Eliminate damage caused by failed processors (vertices) or at least to restrict their influence. Do this by maintaining replicated copies of crucial data and, when a fault occurs, letting a processor change “state” if a majority of its neighbors are in a different state. Other applications of similar ideas in distributed computing: distributed database management, quorum systems, fault local mending.

  40. Threshold Processes Basic k-Threshold Process: You change your state at time t+1 if at least k of your neighbors have the opposite state at time t. Disease interpretation? Same issue as basic majority processes.

  41. Threshold Processes II Irreversible k-Threshold Process: You change your state from 0 to 1 at time t+1 if at least k of your neighbors have state 1 at time t. You never leave state 1. Disease interpretation? Infected if sufficiently many of your neighbors are infected. Special Case k = 1: Infected if any of your neighbors is infected.

  42. Basic 2-Threshold Process

  43. Irreversible 2-Threshold Process

More Related