110 likes | 242 Views
Explicit / Implicit Belief Atoms. Explicit Belief Atoms of view a Expl (B X , a ) BA ( a) for each a B n if a B * B n then Expl (B X , a ) = for each B X. B X. Explicit / Implicit Belief Atoms. Explicit Belief Atoms of view a
E N D
Explicit/Implicit Belief Atoms • Explicit Belief Atoms of view a • Expl(BX,a ) BA(a)for each a Bn • if a B* \Bn thenExpl(BX,a ) = for each BX BX
Explicit/Implicit Belief Atoms • Explicit Belief Atoms of view a • Expl(BX,a ) BA(a) for each a Bn • if a B* \Bn thenExpl(BX,a ) = for each BX • Implicit Belief Atomsof view a Bn • Impl(BX,a ) = BA(a) \Expl(BX,a ) • if a B* \Bn thenImpl(BX,a ) = for each BX BX BX BX
MultiAgent Finite State Machine Definition: Let {La } be a family of MATL languages on {Pa }. A MAFSM F= {Fa } is a total recursive function such that: • Fa is a (set of ) Finite State Machines on the MATL language on: • Paand • Expl(BX,a) for eacha Bn ( B* ) BX
MultiAgent Finite State Machine Definition: Let {La } be a family of MATL languages on {Pa }. A MAFSM F= {Fa } is a total recursive function such that: • Fa is a (set of ) Finite State Machines on the MATL language on: • Paand • Expl(BX,a) for eacha Bn ( B* ) • Fe BX
MultiAgent Finite State Machine Definition: Let {La } be a family of MATL languages on {Pa }. A MAFSM F= {Fa } is a total recursive function such that: • Fa is a (set of ) Finite State Machines on the MATL language on: • Paand • Expl(BX,a) for eacha Bn ( B* ) • Fe • ifaB* \BnthenFa= BX
Satisfiability in a MAFSM Definition: Let {La }be a family of MATL languages on {Pa } and F= {Fa} a MAFSM and fa formula of La: • F,a, f, s BXy ifff’ FaBXand sfreachable from J F,aBX, f, s Argexpl(BX, a, s) y where Argexpl(BX,a,s)= {f| BXf L(s)andBXf Expl(BX,a)}
Satisfiability in a MAFSM Definition: Let {La }be a family of MATL languages on {Pa } and F= {Fa} a MAFSM and fa formula of La: • F,a, f, s BXy ifff’ FaBXand sfreachable from J F,aBX, f, s Argexpl(BX, a, s) y where Argexpl(BX,a,s)= {f| BXf L(s)andBXf Expl(BX,a)}
Satisfiability in a MAFSM Definition: Let {La }be a family of MATL languages on {Pa } and F= {Fa} a MAFSM and fa formula of La: • F,a, f, s BXy ifff’ FaBXand sf reachable from J F,aBX, f, s Argexpl(BX, a, s) y where Argexpl(BX,a,s)= {f| BXf L(s)andBXf Expl(BX,a)} • F,a, f, s y as for FSMs satisfiability
MAFSM and Consistency e BAf BA(f) BA f f
MAFSM and Consistency e BAf BA(f) BA f f
Consistent MAFSM Definition:A MAFSM Fis aconsistent MAFSM if and only if for every view a and every reachable state sf(Fa): • ifBXf Expl(BX,a) andBXf L(s), then for some f FaBX and reachablestate s of f F,aBX, f, s Argexpl(BX, a, s) f