1 / 28

Quantitative Tools

Quantitative Tools. Objectives. Understand why quantitative tools are important in silviculture Know some examples of quantitative tools used Understand TIPSY. Why develop quantitative tools?. Decision making Precise information transfer Clear delineation of options. Examples.

lavonn
Download Presentation

Quantitative Tools

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quantitative Tools

  2. Objectives • Understand why quantitative tools are important in silviculture • Know some examples of quantitative tools used • Understand TIPSY

  3. Why develop quantitative tools? • Decision making • Precise information transfer • Clear delineation of options

  4. Examples • Yield tables • Density management diagrams • Stock and stand tables • Computer growth models • Economic analysis packages

  5. TIPSY • TIPSY (Table Interpolation Program for Stand Tables) • Ministry of Forests • Uses results from a growth model (TASS)

  6. | Trees (#/ha) & Merch Volume (m3/ha) by DBH Class (cm) Top|--------------------------------------------------------------------------------------------------------------------- Age Ht | Trees | Vol | (yr) (m)| 0.0+ | 12.5+ | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | -______________________________________________________________________________________ 0.0 0.0 1600 1600 0 0 10.0 2.3 1547 1514 33 0 0 0 20.0 8.3 1448 64 644 712 28 1 0 0 0 1 30.0 14.0 1412 6 80 413 708 198 7 81 0 0 0 50 29 2 40.0 18.6 1401 3 67 174 471 497 165 22 2 202 0 0 0 45 93 51 11 2 50.0 22.4 1365 40 156 349 383 295 111 26 5 0 304 0 0 35 80 105 59 19 5 0 60.0 25.5 1313 14 132 321 296 261 181 76 25 5 2 403 0 0 32 65 100 106 63 27 7 3 70.0 28.1 1256 4 99 303 263 204 180 123 56 17 5 2 499 0 0 30 58 81 112 109 67 27 9 6

  7. | Trees (#/ha) & Merch Volume (m3/ha) by DBH Class (cm) Top|--------------------------------------------------------------------------------------------------------------------- Age Ht | Trees | Vol | (yr) (m)| 0.0+ | 12.5+ | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | -______________________________________________________________________________________ 0.0 0.0 1600 1600 0 0 10.0 2.3 1547 1514 33 0 0 0 20.0 8.3 1448 64 644 712 28 1 0 0 0 1 30.0 14.0 1412 6 80 413 708 198 7 81 0 0 0 50 29 2 40.0 18.6 1401 3 67 174 471 497 165 22 2 202 0 0 0 45 93 51 11 2 50.0 22.4 1365 40 156 349 383 295 111 26 5 0 304 0 0 35 80 105 59 19 5 0 60.0 25.5 1313 14 132 321 296 261 181 76 25 5 2 403 0 0 32 65 100 106 63 27 7 3 70.0 28.1 1256 4 99 303 263 204 180 123 56 17 5 2 499 0 0 30 58 81 112 109 67 27 9 6

  8. | Trees (#/ha) & Merch Volume (m3/ha) by DBH Class (cm) Top|--------------------------------------------------------------------------------------------------------------------- Age Ht | Trees | Vol | (yr) (m)| 0.0+ | 12.5+ | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | -______________________________________________________________________________________ 0.0 0.0 1600 1600 0 0 10.0 2.3 1547 1514 33 0 0 0 20.0 8.3 1448 64 644 712 28 1 0 0 0 1 30.0 14.0 1412 6 80 413 708 198 7 81 0 0 0 50 29 2 40.0 18.6 1401 3 67 174 471 497 165 22 2 202 0 0 0 45 93 51 11 2 50.0 22.4 1365 40 156 349 383 295 111 26 5 0 304 0 0 35 80 105 59 19 5 0 60.0 25.5 1313 14 132 321 296 261 181 76 25 5 2 403 0 0 32 65 100 106 63 27 7 3 70.0 28.1 1256 4 99 303 263 204 180 123 56 17 5 2 499 0 0 30 58 81 112 109 67 27 9 6

  9. Tree Number

  10. Crown Cover

  11. DBH

  12. Height/Diameter

  13. Species Matters

  14. Growth Curves

  15. Basal Area • Proportional to total LA accumulation over time • Historic artifact of: site quality X stand structure • Use is underpinned by Yoda’s theory of “final constant yield”

  16. Basal Area

  17. Volume Curves

  18. Not Every Cubic Meter Is the Same

  19. Lumber Recovery

  20. Another Problem • Standing Volume Yield

  21. Mortality • Gross yield • Net yield

  22. What number is yield?

  23. Harvest Index • Harvest Index is: [(harvestable volume)/(total volume)] • Utilization • Technology • Allocation

  24. Harvest Index (Cubic Volume)

  25. MAI

  26. Total or Merchantable?

  27. Thinnings • Total yield • Final yield

  28. Volume (Site 30)

More Related