290 likes | 485 Views
Quantitative Tools. Objectives. Understand why quantitative tools are important in silviculture Know some examples of quantitative tools used Understand TIPSY. Why develop quantitative tools?. Decision making Precise information transfer Clear delineation of options. Examples.
E N D
Objectives • Understand why quantitative tools are important in silviculture • Know some examples of quantitative tools used • Understand TIPSY
Why develop quantitative tools? • Decision making • Precise information transfer • Clear delineation of options
Examples • Yield tables • Density management diagrams • Stock and stand tables • Computer growth models • Economic analysis packages
TIPSY • TIPSY (Table Interpolation Program for Stand Tables) • Ministry of Forests • Uses results from a growth model (TASS)
| Trees (#/ha) & Merch Volume (m3/ha) by DBH Class (cm) Top|--------------------------------------------------------------------------------------------------------------------- Age Ht | Trees | Vol | (yr) (m)| 0.0+ | 12.5+ | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | -______________________________________________________________________________________ 0.0 0.0 1600 1600 0 0 10.0 2.3 1547 1514 33 0 0 0 20.0 8.3 1448 64 644 712 28 1 0 0 0 1 30.0 14.0 1412 6 80 413 708 198 7 81 0 0 0 50 29 2 40.0 18.6 1401 3 67 174 471 497 165 22 2 202 0 0 0 45 93 51 11 2 50.0 22.4 1365 40 156 349 383 295 111 26 5 0 304 0 0 35 80 105 59 19 5 0 60.0 25.5 1313 14 132 321 296 261 181 76 25 5 2 403 0 0 32 65 100 106 63 27 7 3 70.0 28.1 1256 4 99 303 263 204 180 123 56 17 5 2 499 0 0 30 58 81 112 109 67 27 9 6
| Trees (#/ha) & Merch Volume (m3/ha) by DBH Class (cm) Top|--------------------------------------------------------------------------------------------------------------------- Age Ht | Trees | Vol | (yr) (m)| 0.0+ | 12.5+ | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | -______________________________________________________________________________________ 0.0 0.0 1600 1600 0 0 10.0 2.3 1547 1514 33 0 0 0 20.0 8.3 1448 64 644 712 28 1 0 0 0 1 30.0 14.0 1412 6 80 413 708 198 7 81 0 0 0 50 29 2 40.0 18.6 1401 3 67 174 471 497 165 22 2 202 0 0 0 45 93 51 11 2 50.0 22.4 1365 40 156 349 383 295 111 26 5 0 304 0 0 35 80 105 59 19 5 0 60.0 25.5 1313 14 132 321 296 261 181 76 25 5 2 403 0 0 32 65 100 106 63 27 7 3 70.0 28.1 1256 4 99 303 263 204 180 123 56 17 5 2 499 0 0 30 58 81 112 109 67 27 9 6
| Trees (#/ha) & Merch Volume (m3/ha) by DBH Class (cm) Top|--------------------------------------------------------------------------------------------------------------------- Age Ht | Trees | Vol | (yr) (m)| 0.0+ | 12.5+ | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | -______________________________________________________________________________________ 0.0 0.0 1600 1600 0 0 10.0 2.3 1547 1514 33 0 0 0 20.0 8.3 1448 64 644 712 28 1 0 0 0 1 30.0 14.0 1412 6 80 413 708 198 7 81 0 0 0 50 29 2 40.0 18.6 1401 3 67 174 471 497 165 22 2 202 0 0 0 45 93 51 11 2 50.0 22.4 1365 40 156 349 383 295 111 26 5 0 304 0 0 35 80 105 59 19 5 0 60.0 25.5 1313 14 132 321 296 261 181 76 25 5 2 403 0 0 32 65 100 106 63 27 7 3 70.0 28.1 1256 4 99 303 263 204 180 123 56 17 5 2 499 0 0 30 58 81 112 109 67 27 9 6
Basal Area • Proportional to total LA accumulation over time • Historic artifact of: site quality X stand structure • Use is underpinned by Yoda’s theory of “final constant yield”
Another Problem • Standing Volume Yield
Mortality • Gross yield • Net yield
Harvest Index • Harvest Index is: [(harvestable volume)/(total volume)] • Utilization • Technology • Allocation
Thinnings • Total yield • Final yield