1 / 17

이산수학 (Discrete Mathematics)  정수와 알고리즘 (Integers and Algorithms)

이산수학 (Discrete Mathematics)  정수와 알고리즘 (Integers and Algorithms). 2014 년 봄학기 강원대학교 컴퓨터과학전공 문양세. Introduction. Integers and Algorithms. Base- b representations of integers. ( b 진법 표현 ) Especially: binary, hexadecimal, octal. Also, two’s complement representation (2 의 보수 표현 )

lazaro
Download Presentation

이산수학 (Discrete Mathematics)  정수와 알고리즘 (Integers and Algorithms)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 이산수학(Discrete Mathematics) 정수와 알고리즘(Integers and Algorithms) 2014년 봄학기 강원대학교 컴퓨터과학전공 문양세

  2. Introduction Integers and Algorithms • Base-b representations of integers. (b진법 표현) • Especially: binary, hexadecimal, octal. • Also, two’s complement representation(2의 보수 표현) • Algorithms for computer arithmetic: • Binary addition, multiplication, division. • Euclidean algorithm for finding GCD’s.

  3. Base-b Representations of Integers Integers and Algorithms • If b is a positive integer greater than 1,then a given positive integer n can be uniquely represented as follows: n = akbk + ak-1bk-1 + … + a1b1 + a0b0 where • k is a natural number. • and a0, a1, …, and ak are natural numbers less than b. • ak  0. • Example: • 165 = 1·102 + 6·101 + 5·100 = (165)10 • 165 = 2·82 + 4·81 + 5·80 = (245)8

  4. Base-b Number Systems Integers and Algorithms Ordinarily we write base-10 representations of numbers (using digits 0-9). However, 10 isn’t special; any base b>1 will work. For any positive integers n, b, there is a unique sequence akak-1… a1a0of digitsai<b such that The “base b expansion of n” (n의 밑수 b전개, n의 b진법 표현)

  5. Particular Bases of Interest Integers and Algorithms Used only because we have 10 fingers Base b=10 (decimal):10 digits: 0,1,2,3,4,5,6,7,8,9. Base b=2 (binary):2 digits: 0,1. (“Bits”=“binary digits.”) Base b=8 (octal):8 digits: 0,1,2,3,4,5,6,7. Base b=16 (hexadecimal):16 digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F Used internally in all modern computers Octal digits correspond to groups of 3 bits Hex digits give groups of 4 bits

  6. Converting to Base b (1/2) Integers and Algorithms • Informal Algorithm 1. To convert any integer n to any base b>1: 2. To find the value of the rightmost (lowest-order) digit, simply compute n mod b. (n%b로 가장 끝 자리(digit)를 찾는다.) 3. Now replace n with the quotient n/b.(다음 자리(digit)을 구하기 위하여, 몫을 n으로 삼는다.) 4. Repeat above two steps to find subsequent digits, until n is gone (=0). (단계 2/3을 n이 0이 될 때 까지 반복한다.) • (177130)10 = (?)16 • 177130 = 16·11070 + 10 • 11070 = 16·691 + 14 • 691 = 16·43 + 3 • 43 = 16·2 + 11 • 2 = 16·0 + 2  (177130)10 = (2B3EA)16 • (241)10 = (?)2 • 241 = 2·120 + 1, 120 = 2·60 + 0 • 60 = 2·30 + 0,30 = 2·15 + 0 • 15 = 2·7 + 1, 7 = 2·3 + 1 • 3 = 2·1 + 1, 1 = 2·0 + 1  (241)10 = (11110001)2

  7. Converting to Base b (2/2) Integers and Algorithms Formal Algorithm procedurebase b expansion (n: positive integer) q := n k := 0 whileq 0 begin ak := q mod b {remainder} q := q/b {quotient} k := k + 1 end {the base b expansion of n is (akak-1… a1a0)b}

  8. Addition of Binary Numbers Integers and Algorithms Intuition (let a = (an-1… a1a0)2, b = (bn-1… b1b0)2) ci = (ai-1+bi-1+ci-1)/2 cn-1 cn-2 . . . c1c0 a = an-1 an-2 . . . a2 a1 a0 b = bn-1 bn-2 . . . b2 b1 b0 si = (ai+bi+ci)%2 a+b = sn sn-1 sn-2 . . . s2 s1 s0 Algorithm procedureadd(an−1…a0, bn−1…b0: binary expressions of a,b) c := 0 {c mean a carry} fori := 0 to n−1 {i means a bit index} begin sum := ai+ bi + c {2-bit sum} si := summod 2 {low bit of sum} c := sum/2 {high bit of sum} end sn := c {the binary expression of the sum is (snsn-1… s1s0)2} O(n)

  9. 2’s Complement (2의 보수) (1/2) Integers and Algorithms • In binary, negative numbers can be conveniently represented using 2’s complement notation.(실제로, 컴퓨터에서는 음수를 2의 보수로 표현한다.) • In this scheme, a string of n bits can represent integers −2n−1 ~ (2n−1−1). • 0이상의 정수만 표현한다면… 0 ~ 2n−1 (unsigned int n) • 음의 정수까지 표현한다면… −2n-1~ 2n-1−1 (int n) • The bit in the highest-order bit-position (n−1) represents a coefficient multiplying −2n−1;(왼쪽 첫 번째 bit는 “ −2n−1”을 나타내며, 흔히 부호(+ or −)를 의미한다.) • The other positions i < n−1 just represent 2i, as before.

  10. 2’s Complement (2의 보수) (2/2) Integers and Algorithms • The negation of any n-bit 2’s complement numbera(= an−1…a0) is given by an−1…a0 + 1. • Examples • 1011 = −(0100 + 1) = −(0101) = −(5)10 • 0100 = +0100 = (4)10 Bitwise logical complement of a

  11. Subtraction of Binary Numbers Integers and Algorithms Theorem: For an integer a represented in 2’s complement notation, −a = a + 1. (a가 2보수로 표현된다면, …) Proof: Just try it by yourself! Algorithm proceduresubtract (an−1…a0, bn−1…b0: binary 2’s complement expressions of a,b) returnadd(a, add(b, 1)){ a + (−b) }

  12. Multiplication of Binary Numbers (1/2) Integers and Algorithms Intuition (let a = (an-1… a1a0)2, b = (bn-1… b1b0)2) a = an-1 an-2 . . . a2 a1 a0 b = bn-1 bn-2 . . . b2 b1 b0 c0= s(n-1,0)s(n-2,0). . . s(2,0)s(1,0)s(0,0) c1= s(n-1,1)s(n-2,1). . . s(2,1)s(1,1)s(0,1) 0 c2= s(n-1,2)s(n-2,2). . . s(2,2)s(1,2)s(0,2) 00 . . . . . . a·b = cn-1 + cn-2 + ... + c2 + c1 + c0 +) s(i,j) = (ifbj = 1 then aielse 0) cj = (if bj = 1 then a << j else 0)

  13. Multiplication of Binary Numbers (2/2) Integers and Algorithms Algorithm proceduremultiply(an−1…a0, bn−1…b0: binary expressions of a,b) forj := 0 to n−1{a bit index for b} begin ifbj= 1 thencj:= a shifted j places {cj:= a << j} elsecj:= 0 end {c1, c2, …,cn-1 are the partial products.} p := 0 forj := 0 ton−1 p := add(p, cj) {p is the value of ab} cj = (if bj = 1 then a << j else 0) O(n2)  Can be reduced to O(n1.585)

  14. Division Algorithm Integers and Algorithms Example: 23/4? r q 23 − 4 = 19 1 19 − 4 = 15 2 15 − 4 = 11 3 11 − 4 = 7 4 7 − 4 = 35 Algorithm proceduredivision(a, d: positive integer) q := 0 r := a whilerd begin r := r−d q := q + 1 end {q is the quotient(=a/d), r is the remainder(=a%d)}

  15. Euclid’s Algorithm for GCD Integers and Algorithms • Finding GCDs by comparing prime factorizations can be difficult if the prime factors are unknown.(소인수분해로 최대공약수를 구하는 것은 어렵다. 특히, 큰 수인 경우…) • Euclid discovered: For all integers a, b, gcd(a, b) = gcd((a mod b), b). • Sort a,b so that a>b, and then (given b>1) (a mod b) < a, so problem is simplified. • Examples • gcd(372, 164) = gcd(372 mod 164, 164) [372%164 = 44] • gcd(164, 44) = gcd(164 mod 44, 44) [164%44 = 32] • gcd(44, 32) = gcd(44 mod 32, 32) = gcd(12, 32) = gcd(12, 8) gcd(8, 4) = gcd(4, 0) = 4.

  16. Proof of Euclid’s Algorithm Integers and Algorithms Prove gcd(a,b) = gcd(b,r) where r = abq • a와 b의 공약수는 b와 r의 공약수가 같음을 보이면, 양쪽 공약수의 쌍이 같으므로 (최대공약수가 같아져) 증명이 이루어진다. • d를 a와 b의 공약수라 하자. • 그러면, a = dqa, b = dqb가 성립한다. • 정의에 의해, r = dqadqbq = d(qaqbq)이 성립하므로, d는 r의 약수이다. • 따라서, d는 b와 r의 공약수이다. • d를 b와 r의 공약수라 하자. • 그러면, b = dqb, r = dqr이 성립한다. • 정의에 의해, a = dqr + dqbq = d(qr + qbq)이 성립하므로, d는 a의 약수이다. • 따라서, d는 a와 b의 공약수이다.

  17. Euclid’s Algorithms Integers and Algorithms Algorithm in Pseudocode proceduregcd(a, b: positive integer) whileb 0 begin r := amodb {r = a % b} a := b b := r end return a Algorithm in C (using recursive calls) int gcd(int a, int b) /* assume a > b */ { if(b==0) return a; else return gcd(b, a%b); }

More Related