310 likes | 325 Views
Spectroscopy of particle-phonon coupled states in 133 Sb by the triton transfer reaction of 132 Sn on 7 Li: an advanced test of nuclear interactions. Spokespersons : S ilvia Leon i and Bogdan Fornal; Local contact : Karl Johnston.
E N D
Spectroscopy of particle-phonon coupled states in 133Sb by the triton transfer reaction of132Sn on 7Li: an advanced test of nuclear interactions Spokespersons:Silvia Leoni and Bogdan Fornal; Localcontact: Karl Johnston S. Leoni1,2, G. Benzoni2, G. Bocchi2, S. Bottoni1, A. Bracco1,2, F. Camera1,2,F.C.L. Crespi2, A. I. Morales2 B. Fornal3,B. Szpak3, P. Bednarczyk3, N. Cieplicka3, W. Królas3, A. Maj3 , K. Rusek4, D. Bazzacco5, S. Lunardi5, D. Mengoni5, F. Recchia5, C.A.Ur5, J. Valiente-Dobon6, F. Gramegna6, T. Marchi6, M. Huyse7, R. Raabe7, P. Van Duppen7, M. Sferrazza8, G. Georgiev9, A. Blazhev10, D. Rosiak10, B. Siebeck10, M. Seidlitz10, P. Reiter10, N. Warr10, A.L. Hartig11, C. Henrich11, S. Ilieva11, T. Kroell11, M. Thürauf11, R. Gernhaeuser12, D. Mücher12, R. Janssens 13, M.P. Carpenter13, S. Zhu13, N. Marginean14, M. Kowalska15, • 1UniversitàdegliStudi di Milano, Via Celoria 16, 20133, Italy, 2 INFN, sezione di Milano, Italy • 3Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland • 4 Heavy Ion Laboratory, University of Warsaw, Poland • 5 University of Padova and INFN sez. Padova, Italy • 6 Legnaro National Laboratory, Italy • 7Instituutvoor Kern-en Stralingsfysisca, K.U.Leuven, Belgium • 8Universitélibre de Bruxelles, Belgium • 9csnsm, Orsay, France • 10Institut fur Kernphysik der Universitatzu Koln, Germany • 11 TU Darmstadt, Germany • 12 TU Munchen, Germany • 13 Argonne National Laboratory, USA • 14IFIN-HH, Bucharest, Romania • 15ISOLDE, CERN, Switzerland
The experiment was scheduled in November 2018. Few days before running, the experiment was cancelled, as a consequence of severe difficulties in providing the 132Sn beam.
OUTLINE • Aim of the experiment • Experimentaltechnique • Developmentswhichoccurred in the period after the approval of the experiment • Competitiveness of the proposedexperiment
Neighborhoods of doubly-magicnuclei as the bestlaboratory for studying the basicingrediends of nuclearmodels 82 208Pb Proton number Z 126 r-processpath 50 terra incognita 82 132Sn 28 20 50 50 48Ca 8 Neutron number N 2 28 20 2 8 82
Neighborhoods of doubly-magicnuclei as the bestlaboratory for studying: i) particle-vibrationcouplings ii) effective proton-neutron interactions d5/2 g7/2 s1/2 h9/2 f5/2 p3/2 f7/2 h11/2 i13/2 d3/2 N=82 shell gap s1/2 h11/2 Xe I Te d5/2 g7/2 Sb Sn 133Sb 134Sb shell gap Z=50 In 132Sn Cd 88 Ag g9/2 86 p3/2 f5/2 p1/2 Pd 84 d3/2 74 76 78 80 82
h9/2 f5/2 p3/2 f7/2 h11/2 i13/2 d3/2 N=82 shell gap d5/2 s1/2 g7/2 s1/2 h11/2 d5/2 g7/2 16.6 ms shell gap Z=50 Xe 88 I 86 Te 84 Sb Sn 133Sb 74 76 78 80 82 In 132Sn Cd particle-vibrationcouplings Ag g9/2 p3/2 p1/2 f5/2 Pd d3/2
HYBRID Model – 133Sb Spectrum (MilanoNuclearTheoryGroup) G. Colò, P. F. Bortignon, and G. Bocchi, Phys. Rev. C95, 034303 (2017) E [MeV] HYBRID Model 8 7 6 5 4 3 2 1 experiment Coreexcitations 16.6ms 0.76 Spec. Factor 0.92 0.8 Single Particle states 0.94 0.96 133Sb 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 SPIN
HYBRID Model – 133Sb Spectrum (MilanoNuclearTheoryGroup) G. Colò, P. F. Bortignon, and G. Bocchi, Phys. Rev. C95, 034303 (2017) E [MeV] 8 7 6 5 4 3 2 1 Sn positiveparity negativeparity experiment Coreexcitations 16.6ms 0.76 Spec. Factor 0.92 0.8 Single Particle states 0.94 0.96 134Sb 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 SPIN
134Sbideallysuited for studying: effective proton-neutron interactions d5/2 g7/2 s1/2 h9/2 f5/2 p3/2 f7/2 h11/2 i13/2 d3/2 N=82 shell gap s1/2 h11/2 Xe d5/2 I g7/2 Te 134Sb Sb shell gap Z=50 132Sn Sn 88 In 86 Cd 84 Ag g9/2 p3/2 f5/2 p1/2 Pd 74 76 78 80 82 d3/2
experiment Proton-neutron multiplets in the one-proton one-neutron nucleus134Sb 134Sb Vlow-k realistic shell model calculations Sn theory 134Sb 134Sb What little is known on 134Sb comes mainly from beta-decay studies or spectroscopic investigations of fission products.
A newmethodfor studyingpromptspectroscopy of YRAST and NON-YRAST states in neutron-richnuclei: triton transfer reactioninduced by a radioactivebeam on a 7Li target n ~2º 7Li AX AX+t Z Z n
n ~2º 7Li AX AX+t Z Z n 135 133 134 Sb Sb Sb 132 Sn
n ~2º 7Li AX AX+t Z Z n Advantages of the proposedmethod: • The very inverse kinematics guarantees that the product nuclei travel downstream in a very small recoil cone, thus Doppler correction does not require recoil detection. • Reaction channel of interest will be uniquely associated with the emission of an α particle: emitted alphaparticlesmay be used as event tags. • The reactionpopulatesbothyrast and non-yraststateswith comparableintensity.
TEST of the method: REX-ISOLDE experiment – „Spectroscopy of n-rich 98-100Sr nuclei withtriton transfer reactioninduced by 98Rb on 7Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams” Spokespersons: Bogdan Fornal and Silvia Leoni (November 2012) Collaboration: IFJ PAN Kraków, Univ. of Milan, SLCJ Warsaw, GANIL, LNL Legnaro, Univ. of Padova, K.U.Leuven, UniversitéLibre de Bruxelles, CSNSM Orsay, Univ. of Köln, TU Darmstadt,TU Munchen, LPSC Grenoble, Argonne Nat. Lab., IFIN-HH Bucharest,IRNE-BAS Sofia, ISOLDE CERN. 98Rb + 7Li101-xSr+α+xn 101 100 99 98 Sr Sr Sr Sr 98 Rb
REX-ISOLDE + MINIBALL + T-REX 98Rb(60%)+98Sr(40%) (2.84 MeV/u) + 7LiF (1.5 mg/cm2) IBEAM (98Ru/98Sr) ≈ 2.5 x 104pps 4 S.Bottoni, S.Leoni, B.Fornal, R.Raabeat al., Phys. Rev. C 92, 024322 (2015) 98 99 98 99 Sr Sr Sr Y 98 Rb
133Sb+α+2n 132Sn(510 MeV) + 7Li 134Sb+α+1n The same techniquewill be applied to study the structure of 133Sb and 133Sb by using a 132Sn beam from HIE-ISOLDE: 133 134 135 Sb Sb Sb 132 Sn
132Sn(510 MeV) + 7Li135-xSb+α+xn (21 shiftsapproved) Reaction data: Beam: 132Sn, Ebeam=510 MeV(3.9 MeV/A) 8*105pps(on target) 133 Sb 134 Sb 132 Sn Target: 7LiF, 1.5 mg/cm2 beam Cross section: 100 mb for t-transfer (135Sb production) 135 Sb Final products: 80% 2n-evap. 133Sb 20% 1n-evap. 134Sb Countingrates: for a 133Sb gline with 1% intensity: 300 counts
Developmentswhichoccurred in the period after the approval of the experiment (2014-2019)
Campaign @ ILL-Reactor (Grenoble) • g-spectroscopy of neutron-inducedfission products • for n + 235U, 241Pu • 2012-2013: 100 days, 95% DATA taking 16.6 ms Identification of yraststatesabove the usisomer in 133Sb, crucial for the studypresentedhere 4G.Bocchi, S.Leoni, B.Fornal, G.Colòat al., Phys. Lett. B 760 (2016) 273.
The development of a new approach called “Hybrid Configuration Mixing” (HCM) model, which allows to describe complex excitations in one-valence particle/hole nuclei around doubly magic systems The Milano Nuclear Theory Group G. Colò, P. F. Bortignon, and G. Bocchi, Phys. Rev. C95, 034303 (2017). • Different types of states can be described: • states based on couplings between particle and collective phonons of the core, • states of shell-model types, like 2 particles–1 hole, • mixed both types of configurations NO FREE PARAMETERS Coupling matrix elements between single particle and CORE excitations are consistently calculated with the same SkX interaction
“Hybrid Configuration Mixing Model”: 133Sb- perfecttestingground of the Model ? Sn Sn 7 6 5 4 3 2 1 132Sn CORE excitations part.-hole HYBRID Model experiment E [MeV] 2- 9+ 7+ 5+ 8+ 6+ phonons 133Sb: 132Sn + 1p 4+ 3- 2+ n(f7/2h-111/2) p(g7/2) mixed pg7/2phonon 1/2+ spec. factor 11/2- 0.92 0.76 single particlestates in 133Sb 3/2+ 0.8 single particle states 5/2+ 0.94 0+ 0.96 7/2+ 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2 19/2 21/2 23/2 25/2 SPIN
The proposed experiment provides a unique method to access yrast and non-yrast structures in the 133Sb and 134Sb nuclei, which are of primary importance for: • i) studying single particle – core couplings, • ii) valence proton-valence neutron interactions • The experiment can only be done at an ISOL facility able to provide an accelerated ion beam of 132Sn, with intensity of the order of at least 105 -106pps. • In recent years, such a beam could only be produced at ISOLDE, and this situation won’t change quickly.
133Sb 134Sb THANK YOU
EXAMPLE: non-yrast and yraststatespopulation in 125Sb 7Li(3.8 MeV/A) + 124Sn 125Sb + a2n 310 590 gate 332 2n 125 Sb 1087 t 124 5 4 3 2 1 0 Sn E [MeV] 1017 1369 1260 1404 1369 1260 positiveparity 1404 1087 negativeparity 1017 590 310 332 1/2 3/2 5/2 7/2 9/2 11/2 13/2 SPIN N. Margineanat al., NIPNE, Bucharest (privatecommunication)
REX-ISOLDE + MINIBALL + T-REX 98Rb(60%)+98Sr(40%) (2.84 MeV/u) + 7LiF (1.5 mg/cm2) Data wereanalyzed by Simone Bottoni, Ph.D. ThesisUniv. of Milano and KU Leuven Experimental data on cross-section for t- and a-transfer ESTIMATED TOTAL cross section [mb] MEASURED cross section [mb] Process triton transfer 27 ~90 alpha transfer 5 ~15
DWBA calculations of chargedparticle spectra for transfer processes in98Rb + 7Lireaction (K. Rusek, S. Bottoni) ds/dW[relative] 232 MeV 7Li a 6Li t
132Sn(510 MeV) + 7Li135-xSb+α+xn beam energy treshold DWBA calculations
132Sn(510 MeV) + 7Li135-xSb+α+xn E*=16 MeV E*=19 MeV E*=22 MeV 98Rb + 7Li ->101-xSr+α+xn energy treshold DWBA calculations
Identificationmethod Eexc 16 MeV 2n 98Rb + 7Li ->101-xSr+α+xn 91 3n 289 E*=16 MeV E*=19 MeV E*=22 MeV Eexc 19 MeV 2n 3n 91 counts 289 Eexc 22 MeV 2n 91 3n 289 Eg [keV]