960 likes | 978 Views
This lecture covers the depth of understanding in neural networks, including computational graphs and backpropagation. Learn how to calculate derivatives and perform standard operations.
E N D
Objectives for Lecture 8: Neural Networks Depth of understanding • After the lecture you are able to…
Computational Graph Options: 1. Analytical 2. Differencequotient 3. Computationalgraph
Computational GraphSimple example Letscalculatesome derivatives!
Computational GraphSimple example Letscalculatesome derivatives!
Computational GraphSimple example Letscalculatesome derivatives!
Computational GraphSimple example Letscalculatesome derivatives!
Computational GraphSimple example Letscalculatesome derivatives!
Computational GraphSimple example Letscalculatesome derivatives!
Computational GraphSimple example Letscalculatesome derivatives!
Computational GraphSimple example Letscalculatesome derivatives!
Computational GraphSimple example Gradient „flows“ Upstream Gradient Downstream Gradient Letscalculatesome derivatives!
Computational GraphSimple example Letscalculatesome derivatives!
Computational GraphSimple example Letscalculatesome derivatives!
Computational GraphStandard operations Multiplication Addition: Downstream gradient remainsthe same Downstream gradient switchestootherfactor
Computational GraphAbstract function Forward path
Computational GraphAbstract function Savinglocalgradientsduringforwardpath Forward path
Computational GraphAbstract function Alreadycalculatedduringforwardpath Backwardpath
ComputationalGraphAbstract function Alreadycalculatedduringforwardpath Backwardpath
Computational GraphNeuron Local derivative
BackpropagationNeuralChain Forward path Input Neuron Layer 1 Layer 2 Loss Function
BackpropagationNeural Chain Forward path Input Neuron Layer 1 Layer 2 Loss Function
BackpropagationNeuralChain Forward path Input Neuron Layer 1 Layer 2 Loss Function Backwardpath
BackpropagationNeuralChain Forward path Input Neuron Layer 1 Layer 2 Loss Function Backwardpath
BackpropagationNeuralChain Forward path Input Neuron Layer 1 Layer 2 Loss Function Backwardpath