670 likes | 685 Views
DESY superconducting SASE FEL’s Jean-Paul Carneiro DESY Hamburg. THE TESLA COLLABORATION (12 countries, 55 institutes, status 01/2004). MEPI, Moscow ITEP, Moscow BINP, Novosibirsk BINP, Protvino IHEP, Protvino INR, Troitsk JINR, Dubna. RWT, Hochschule, Aachen BESSY, Berlin
E N D
DESY superconducting SASE FEL’s Jean-Paul Carneiro DESY Hamburg
THE TESLA COLLABORATION (12 countries, 55 institutes, status 01/2004) MEPI, Moscow ITEP, Moscow BINP, Novosibirsk BINP, Protvino IHEP, Protvino INR, Troitsk JINR, Dubna RWT, Hochschule, Aachen BESSY, Berlin Hahn-Meitner Institut, Berlin Max-Born-Institut, Berlin Technische Universität Berlin Technische Universität Darmstadt Technische Universität Dresden Universität Frankfurt GKSS-Forschungszentrum Geesthacht DESY Hamburg and Zeuthen Universität Hamburg Forschungszentrum Karlsruhe Universität Rostock Bergische Universität-GH Wuppertal CANDLE Yerevan Yerevan Physics Institute, Yerevan IHEP, Beijing Tsingua University, Beijing Peking University CIEMAT, Madrid Institute of Physics, Helsinki Laboratori Nazionali di Frascati INFN Legnaro INFN Milan INFN Rome II Sincrotrone Trieste PSI, Villigen CEA/DSM DAPNIA CE-Saclay LAL Orsay IPN Orsay Institut of Nuclear Physics, Cracow University of Mining and Metallurgy, Cracow Soltan Institut for Nuclear Studies, Otwock-Swierk High Pressure Research Center, Warsaw Institute of Physics, Warsaw Polish Atomic Energy Agency, Warsaw Faculty of Physics, University of Warsaw ANL, Argonne, Il FNAL, Batavia, Il MIT, Cambridge, MA Cornell University, NJ UCLA, Los Angeles, CA Jlab, Newport News, VA CCLRC-Daresbury and Rutherford Appleton Laboratory Royal Holloway, University of London Queen Mary, University of London University College London University of Oxford Jean-Paul Carneiro, FNAL, 16-Sept-04 2 DESY superconducting SASE FEL’s
OUTLINE • Basic principle of the Self Amplified Spontaneous Emission (SASE) • Description of DESY superconducting SASE FEL’s •Tesla Test Facility, Phase 1 (TTF1) • Tesla Test Facility, Phase 2 (TTF2) • Status of the European XFEL Jean-Paul Carneiro, FNAL, 16-Sept-04 3 DESY superconducting SASE FEL’s
Basic principle of SASE Saturation Exponential Growth Spontaneous emission High peak brilliance (exceeding storage rings by several order of magnitudes). High degree of transverse coherence close to saturation Jean-Paul Carneiro, FNAL, 16-Sept-04 4 DESY superconducting SASE FEL’s
FEL saturation for sub-micrometer wavelengths Successful demonstration of FEL saturation for sub-micrometers wavelengths : • LEUTL : 385 nm (Sept. 2000) • TTF1 : shortest wavelengths obtained at TTF1 at DESY (1st saturation @ 98 nm in Sept. 2001) saturation obtained from 80 nm to 120 nm Jean-Paul Carneiro, FNAL, 16-Sept-04 5 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 1 • First beam in 1996 with a thermoionic gun • Operated from Dec. 1998 to Nov. 2002 using the FNAL photo-injector •Total length of the accelerator : ~ 120 meters, Energy : 220-270 MeV. Booster Cavity BC2 BC1 ACC1 ACC2 To FEL diagnostics UNDULATOR RF GUN Dump Jean-Paul Carneiro, FNAL, 16-Sept-04 6 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 1 Undulator Photo-injector, Capture Cavity and Cryo-Modules Jean-Paul Carneiro, FNAL, 16-Sept-04 7 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 1 BC2 Booster Cavity BC1 ACC1 ACC2 To FEL diagnostics UNDULATOR RF GUN Dump Jean-Paul Carneiro, FNAL, 16-Sept-04 8 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 1 / BC2 compression upstream BC2 downstream BC2 Jean-Paul Carneiro, FNAL, 16-Sept-04 9 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 1 / Radiation Characteristics Photons • Radiation wavelength : 80-120 nm • FWHM radiation pulse duration : 30-100 fs • Energy in the radiation pulse : 30-100 µJ • Radiation peak power level : ~1.5 GW BC2 Booster Cavity BC1 ACC1 ACC2 To FEL diagnostics UNDULATOR RF GUN Dump ASTRA ELEGANT ASTRA Reference : http://www.desy.de/s2e-simu (TTF1 Start-to-End Simulations of SASE FEL at the TESLA Test Facility, Phase 1, DESY PREPRINT 03-197, M. Dohlus, et Al.) Jean-Paul Carneiro, FNAL, 16-Sept-04 10 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 1 / FEL saturation Average energy in the radiation pulse Vs active undulator length (numerical simulations with the FAST code) Courtesyof M. Yurkov Jean-Paul Carneiro, FNAL, 16-Sept-04 11 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 1 / FEL radiation Measurement of transverse coherence of the TTF1 FEL radiation Courtesyof R. Ischebeck Jean-Paul Carneiro, FNAL, 16-Sept-04 12 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 1 / Ablation experiment Au film (15 nm) on Si substrate irradiated by a single SASE pulse Courtesyof J. Krzywinski l= 98 nm, W=100 TW/cm2 Jean-Paul Carneiro, FNAL, 16-Sept-04 13 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 1 / Résumé • TTF phase 1 has been concluded successfully Saturation observed in the wavelength of 80-120 nm Peak brilliance as expected ~1.5 GW of peak power in flashes of 30 -100 fs Good agreement between observations and simulation codes (ASTRA / ELEGANT / FAST) Jean-Paul Carneiro, FNAL, 16-Sept-04 14 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 • TTF Phase 2 is an extension of TTF Phase 1 to shorter wavelengths as low as 6 nm. • Total length of the accelerator : ~ 250 meters, Energy : 1 GeV. BC2 BC3 To FEL diagnostics ACC1 ACC2 ACC3 ACC4 ACC5 ACC6 RF GUN S.H. UNDULATOR Dump Jean-Paul Carneiro, FNAL, 16-Sept-04 15 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Longitudinal Phase Space upstream 3.9 GHz cavity downstream 3.9 GHz Jean-Paul Carneiro, FNAL, 16-Sept-04 16 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Longitudinal Phase Space downstream BC2 downstream BC3 Jean-Paul Carneiro, FNAL, 16-Sept-04 17 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Longitudinal Phase Space Jean-Paul Carneiro, FNAL, 16-Sept-04 18 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Slice emittance Jean-Paul Carneiro, FNAL, 16-Sept-04 19 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 Photons • Radiation wavelength : 6 nm • FWHM radiation pulse duration : ~ 200 fs • Radiation peak power level : ~ 2.8 GW To FEL diagnostics BC2 BC3 ACC1 ACC2 ACC3 ACC4 ACC5 ACC6 RF GUN S.H. UNDULATOR Dump Reference : http://www.desy.de/s2e-simu (TTF2 Optimized Version, P. Piot et Al. ) Jean-Paul Carneiro, FNAL, 16-Sept-04 20 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Present Status • 3.9 GHz cavity and ACC6 not installed (2006). To FEL diagnostics BC2 BC3 ACC1 ACC2 ACC3 ACC4 ACC5 RF GUN UNDULATOR Dump • Injector Conditioning from Jan. 2004 to June 2004 (dump downstream ACC2). Shutdown from June 2004 to Aug. 2004. Re-commissioning since Sept (dump downstream ACC5 for dark current studies). • Cryostat : cooled at 2 K from April to June. • RF : Modulator 3 and 2 (Gun, ACC1) OK, Mod. 5 and 4 (ACC2/3, ACC4/5/6) OK soon. • Vacuum : > 100 ion pumps, > 50 TSP, OK. • Diagnostics: Cameras OK, Toroids OK, BPM installed (electronics available end 2004). Jean-Paul Carneiro, FNAL, 16-Sept-04 21 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Status TTF2 RF GUN RF Gun & ACC1 Jean-Paul Carneiro, FNAL, 16-Sept-04 22 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Status FODO lattice & ACC2 3.9 GHz cavity section and BC2 Jean-Paul Carneiro, FNAL, 16-Sept-04 23 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Status ACC4 & ACC5 End ACC3 & BC3 Jean-Paul Carneiro, FNAL, 16-Sept-04 24 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Status LOLA cavity End ACC5 Jean-Paul Carneiro, FNAL, 16-Sept-04 25 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Status main & bypass beamline collimator section Jean-Paul Carneiro, FNAL, 16-Sept-04 26 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Status beam dump undulator Jean-Paul Carneiro, FNAL, 16-Sept-04 27 DESY superconducting SASE FEL’s
Courtesyof D. Kostin TTF, Phase 2 / Modules Operating Gradients ACC4 ACC5 ACC2 ACC1 ACC3 Jean-Paul Carneiro, FNAL, 16-Sept-04 28 DESY superconducting SASE FEL’s
Courtesyof D. Kostin Tesla Test Facility, Phase 2 / ACC1 Operation EP cavity Jean-Paul Carneiro, FNAL, 16-Sept-04 29 DESY superconducting SASE FEL’s
Courtesyof S. Schreiber 0 10 20 30 40 50 Time (ps) Tesla Test Facility, Phase 2 / Laser • Laser pulse Short Longitudinal Pulse : Gaussian : Transverse neither gaussian nor flat : Jean-Paul Carneiro, FNAL, 16-Sept-04 30 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Energy Gun Vs Forward Power Jean-Paul Carneiro, FNAL, 16-Sept-04 31 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Energy Gun Vs Launch Phase Jean-Paul Carneiro, FNAL, 16-Sept-04 32 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Energy Vs ACC1 Phase Jean-Paul Carneiro, FNAL, 16-Sept-04 33 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Energy Spread Vs ACC1 Phase Jean-Paul Carneiro, FNAL, 16-Sept-04 34 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Emittance z = 19 m Magnetic length of quads 270 mm, one common power supply Design phase advance 45 deg Jean-Paul Carneiro, FNAL, 16-Sept-04 35 DESY superconducting SASE FEL’s
TTF, Phase 2 / Emittance Measurement Method • Beam sizes are measured at four screens with fixed quadrupole currents in a FODO lattice • Emittance and Twiss parameters calculated from the measured beam sizes and beam size errors • FODO cell with periodic beta function is not a requirement for the emittance measurement 4 OTR + wirescanner stations Jean-Paul Carneiro, FNAL, 16-Sept-04 36 DESY superconducting SASE FEL’s
Courtesyof K. Honkavaara 4DBC2 6DBC2 10DBC2 8DBC2 TTF, Phase 2 / Matched Beam in FODO 3 bunches, 1 nC Solenoids at 277 A 6.4 mm Jean-Paul Carneiro, FNAL, 16-Sept-04 37 DESY superconducting SASE FEL’s
Courtesyof K. Honkavaara TTF, Phase 2 / Matched Beam in FODO Normalized horizontal and vertical emittances vs. solenoid current. This data is still subject to further analysis, and thus preliminary! Simulation by Y. Kim • Three different image analysis methods used to determine the beam sizes • Since a systematic study of beam size errors is not finished yet, a conservative 10 % beam size error is assumed zoom Jean-Paul Carneiro, FNAL, 16-Sept-04 38 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / First Light Scenarios Nominal Operation linearized compression (less sensitive to CSR and Space Charge) “long” SASE pulse (200 fs FWHM) First Light Scenarios 3.9 GHz cavity not available 445 MeV, 30 nm “short SASE pulse (~50 fs FWHM) (1) E. Saldin, E. Schneidmiller, M. Yurkov, “Expected Properties of the Radiation from the VUV-FEL at DESY (Femtosecond Mode of Operation)”, Proc. FEL 2004, Trieste, Italy. (2) J.-P. Carneiro, B. Faatz, K. Floettmann, “Velocity Bunching at TTF2”, Proc. FEL 2004, Trieste, It. “TTF1 like operation” (1) Q=0.5 nC, laser ~4 ps RMS, BC2 & BC3 “Velocity Bunching” (2) Q=1.0 nC, laser ~4 ps RMS, No Chicanes Jean-Paul Carneiro, FNAL, 16-Sept-04 39 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Velocity Bunching ASTRA SIMULATIONS RMS bunch length Vs Phase of First Cavity of ACC1 Jean-Paul Carneiro, FNAL, 16-Sept-04 40 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Velocity Bunching Case Q = 1 nC ELEGANT OUTPUT ENTRANCE UNDULATOR(Z=203 m) GENESIS OUTPUT (B. Faatz) Jean-Paul Carneiro, FNAL, 16-Sept-04 41 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Velocity Bunching Pyro detector / No velocity buncing Pyro detector / With velocity bunching Jean-Paul Carneiro, FNAL, 16-Sept-04 42 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Velocity Bunching Energy Vs Phase First Cavity ACC1 Energy Spread Vs Phase First Cavity ACC1 Jean-Paul Carneiro, FNAL, 16-Sept-04 43 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Velocity Bunching Quad Scan (Q3UBC2 / Screen 3SBC2 / L = ~ 2.7 meters / Q = 1 nC) Normalized Emittance from Quad Scan ~ 13 mm-mrad Jean-Paul Carneiro, FNAL, 16-Sept-04 44 DESY superconducting SASE FEL’s
Tesla Test Facility, Phase 2 / Résumé • First results from TTF phase 2 encouraging Saturation at 30 nm foreseen for late 2004 / early 2005 Shortest wavelengths and long bunch train Operation with 3.9 Ghz cavity and ACC6 in 2006 Jean-Paul Carneiro, FNAL, 16-Sept-04 45 DESY superconducting SASE FEL’s
XFEL / Version ESFRI workshop (Oct. 2003) • Total length of the facility ~ 3.3 km (~ 2km tunnel), Energy : 20 GeV. • Version presented at the “European Strategy Forum on Research Infrastructures” (ESFRI, 30-31 Oct. 2003, DESY Hamburg) BC1 BC2 UNDULATOR ACC1 ACC2 ACC3 ACC4 S. H. ACC5 ACC57 RF GUN Jean-Paul Carneiro, FNAL, 16-Sept-04 46 DESY superconducting SASE FEL’s
XFEL / Entrance undulator Current distribution Jean-Paul Carneiro, FNAL, 16-Sept-04 47 DESY superconducting SASE FEL’s
XFEL / Entrance undulator slice emittance Jean-Paul Carneiro, FNAL, 16-Sept-04 48 DESY superconducting SASE FEL’s
XFEL / FEL Radiation Photons • Radiation wavelength : 0.1 nm • FWHM radiation pulse duration : 100 fs • Radiation peak power level : 24 GW BC1 BC2 UNDULATOR ACC1 ACC2 ACC3 ACC4 S. H. ACC5 ACC57 RF GUN Reference : http://www.desy.de/s2e-simu (XFEL ESFRI Version, Y. Kim / T. Limberg ) Jean-Paul Carneiro, FNAL, 16-Sept-04 49 DESY superconducting SASE FEL’s
CONLUSION • TTF1, TTF2 and XFEL TTF1 : Saturation at 98 nm in Sept. 2001 + good agreement with simulation codes = great success for the TESLA collaboration. TTF2 : good results TTF1+ good results conditioning TTF2 = very promising for TTF2 operation (6 nm in 2006). XFEL : good results TTF2 + good European cooperation = European XFEL in DESY Hamburg in ~ 2012. • Major progress concerning a Superconducting Linear Collider : 35 MV/m measured in April 2004 at TTF2 with the 5th cavity of ACC1 operating with and without beam. Jean-Paul Carneiro, FNAL, 16-Sept-04 50 DESY superconducting SASE FEL’s