1 / 37

The origin of Cosmic Rays: New developments and old puzzles

The origin of Cosmic Rays: New developments and old puzzles. K. Blum*, B. Katz*, A. Spector, E. Waxman Weizmann Institute *currently at IAS, Princeton. The cosmic ray spectrum. [From Helder et al., SSR 12]. log [dJ/dE]. E -2.7. Galactic. Protons. UHE X-Galactic. E -3.

lea
Download Presentation

The origin of Cosmic Rays: New developments and old puzzles

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The origin of Cosmic Rays:New developments and old puzzles K. Blum*, B. Katz*, A. Spector, E. Waxman Weizmann Institute *currently at IAS, Princeton

  2. The cosmic ray spectrum [From Helder et al., SSR 12]

  3. log [dJ/dE] E-2.7 Galactic Protons UHE X-Galactic E-3 Source: Supernovae(?) Heavy Nuclei Source? Light Nuclei? Lighter Source? 1 1010 106 Cosmic-ray E [GeV] [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00; Lemoine, J. Phys. 13]

  4. The cosmic ray generation spectrum

  5. UHE (>109.5 GeV=101.5 EeV)

  6. UHE: Composition Auger 2010 [Wilk & Wlodarczyk 10]* HiRes2010 (& TA 2011) HiRes 2005 [*Possible acceptable solution?, Auger collaboration 13]

  7. UHE: Anisotropy & Composition Biased (rsource~rgal for rgal>rgal ) CR intensity map (rsource~rgal) Galaxy density integrated to 75Mpc • Anisotropy @ 98% CL; Consistent with LSS • Anisotropy of Z at 1019.7eV implies Stronger aniso. signal (due to p) at (1019.7/Z) eV [since: Acceleration of Z(>>1) to E ~ Acceleration of p to E/Z, p(E/Z) propagation = Z(E) propagation, np>= nZ at the source.] Not observed  No high Z at 1019.7eV [Kashti & EW 08] [EW, Fisher & Piran 97] [Kotera & Lemoine 08; Abraham et al. 08… Foteini et al. 11] [Lemoine & EW 09]

  8. UHE: Flux & Generation Spectrum • e2(dN/de)Observed=e2(dQ/de) teff. (teff. : p + gCMB N +p) • Assume: p, dQ/de~(1+z)me-a log(e2dQ/de) [erg/Mpc2 yr] cteff [Mpc] GZK (CMB) suppression [Katz & EW 09] • >1019.3eV: consistent with • protons, e2(dQ/de) =0.5(+-0.2) x 1044 erg/Mpc3 yr + GZK [EW 1995; Bahcall & EW 03]

  9. Intermediate E (106 GeV=1 PeV < E < 101.5 EeV)

  10. HE n: UHECR bound • p + g N +p p0 2g ; p+  e+ + ne + nm + nm  Identify UHECR sources Study BH accretion/acceleration physics • For all known sources,tgp<=1: • If X-G p’s:  Identify primaries, determine f(z) [EW & Bahcall 99; Bahcall & EW 01] [Berezinsky & Zatsepin 69]

  11. Bound implications: n experiments Fermi 2 flavors,

  12. IceCube (preliminary) detection • 28 events, compared to 12 expected, above 50TeV; ~4s • (cutoff at 2PeV?) • 1/E2 spectrum, 4x10-8GeV/cm2s sr • Consistent with ne:nm:nt=1:1:1 • Consistent with isotropy New era in n astronomy [N. Whitehorn, IC collaboration, IPA 2013]

  13. IceCube (preliminary) detection 2 flavors,

  14. IceCube’s detection: Some implications Isotropic, 1:1:1 flavor ratio, E2Fn~4x10-8GeV/cm2s sr~E2FWB @ 50TeV<E<2PeV • Unlikely Galactic: E2Fg~10-7(E0.1TeV)-0.7GeV/cm2s sr[Fermi]  ~10-9(E0.1PeV)-0.7GeV/cm2s sr • XG distribution of sources, • e2(dQ/de) >=0.5x 1044 erg/Mpc3 yr @ 106GeV< E <109GeV • p, e2(dQ/de)PeV-EeV~ e2(dQ/de) >10EeV, tgp(pp)>~1 • Or: • e2(dQ/de)PeV-EeV>> e2(dQ/de) >10EeV, tgp(pp)<<1 & Coincidence

  15. Low E (1GeV < E < 1TeV)

  16. Estimating the G-CR production rate • CR production in the Galactic disk: • Assuming CR production ~ SFR ~ SN rate, and using we have

  17. Galactic CR propagation models? • For all secondaries: • For positrons: At ~20GeV: frad~0.3~f10Be • Predictions for e+& p consistent with PAMELA & AMS observations. • Positron anomalies? • Due to assumptions adopted RE CR propagation. • Reflect the absence of a basic principles model. [Katz, Blum, Morag & EW 10; Blum Katz & EW 13] -

  18. Primary e+ sources Pulsars [Kashiyama et al. 11] DM annihilation [Hooper et al. 09]

  19. The cosmic ray generation spectrum Galactic CRs (+ CRs~SFR) XG n’s XG CRs

  20. Universal generation spectrum: Implications • Natural: All CRs produced in galaxies, Rate ~ SFR [Loeb & EW 02; Parizot 05; Aublin et al. 05] e2(dQ/de) =0.5(+-0.2) x 1044 erg/Mpc3yr • If so, Galactic CR density << than average @ E>107GeV  Transient sources, currently “dim state” • Implications/ Consistency checks: - Etransient> EGalaxy(>107GeV CRs)~1050.5+-1.5erg, consistent with strong explosions (SNe, GRBs) - Starburst nemission

  21. The 1020eV challenge v R B /G v G2 G2 2R l =R/G (dtRF=R/Gc) [Lovelace 76; EW 95, 04; Norman et al. 95]

  22. Source physics challenges • GRB: 1019LSun, MBH~1Msun, M~1Msun/s, G~102.5 • AGN: 1014 LSun, MBH~109Msun, M~1Msun/yr, G~101 • MQ: 105 LSun, MBH~1Msun, M~10-8Msun/yr, G~100.5 Jet acceleration [Reviws: GRBs Kouveliotou 94; Piran 05 AGN Begelman, Blandford & Rees 84 MQ HE: Aharonian et al 05; Khangulyan et al 07] Energy extraction Particle acceleration [Reviews: Lemoine 13; Kirk 08, 13] Jet content (kinetic/Poynting) Radiation mechanisms

  23. UHE: Bright transients [Lovelace 76; EW 95, 04; Norman et al. 95] • Electromagnetic acceleration in astrophysical sources requires L>LB>1046 (G2/b) (e/Z 1020eV)2 erg/s  No steady sources at d<dGZK  Transient Sources • If electrons are accelerated with protons, transients should also be bright in X-ray/g; The rate of such flares is much too low to account for the CR flux unless L> >1050 erg/s  >1050 erg/s flares or Inefficient e-acceleration (“dark flares”) [EW & Loeb 09]

  24. High energy n’s from Star Bursts • Starburst galaxies • {Star formation rate, density, B} ~ 103x Milky way Most stars formed in z>1.5 star bursts • CR e’s lose all energy to synchrotron radiation, CR p’s likely lose all energy to p production - If p’s lose all energy & radio bgnd dominated by starbursts: [Quataert et al. 06] Fn (~1GeV) Synchrotron radio calibration [Loeb & EW 06]

  25. M82 M81 Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith (University College London), WIYN//NSF, NASA/ESA Robert Gendler

  26. Starburst galaxies: n emission [Loeb & EW 06] • Radio & nbgnd’s consistent with • e2(dQ/de)~1044erg/Mpc3yr in galaxies, ~SFR, tgp(pp)>~1

  27. Are SNRs the low E CR sources? • UHE, Intermediate E: Not yet identified • Low E- SuperNova Remnants? [Baade & Swicky 34] So far, no clear evidence [ Gallant’s talk]. Electromagnetic observations- ambiguous (e.g. TeV e- I.C. [Katz & EW 08; Butt et al. 08]). [e.g. Butt 09; Helder et al., SSR 12]

  28. Summary • The identity of the CR source(s) is still debated. • Many open Q’s RE candidate source(s) physics [accreting BHs]. • e2(dQ/de)~ 1044erg/Mpc3yr at all energies. Suggests: CRs of all E produced in galaxies@ a rate ~ SFR, by transients releasing ~1050.5+-1.5erg. • IceCube detects XG n’s, f~fWB at 50TeV—1PeV - A new era in n astronomy. - Consistent with the predictions of the ‘single source’ hypothesis, for tgp(pp)>~1in StarBursts.

  29. A new era in HE n’s • IceCube’s sensitivity meets the minimum requirements for detection of XG sources. • Preliminary detection of 50TeV-1PeV n’s. • Bright transients are the prime targets. • Coordinatedwidefield EM transient monitoring crucial: - Enhance n detection sensitivity, - Identify sources, Enable physics output. • XG n detection rate limited (<~10/yr). • Detection of a handful of n’s from EM identified sources may resolve outstanding puzzles: - Identify UHECR (& G-CR) sources, - Resolve open “cosmic-accelerator” physics Q’s (related to BH-jet systems, particle acc., rad. mechanisms), - Constrain n physics, LI, WEP.

  30. Back up slides

  31. Transient sources: GRB n’s • If: Baryonic jet • Background free: [EW & Bahcall 97, 99; Rachen & Meszaros 98; Guetta et al. 01; Murase & Nagataki 06]

  32. IceCube’s limits • IC40+59: No n’s for ~200 GRBs (~2 expected). • IC is achieving relevant sensitivity ! • IC analyses overestimate GRB flux predictions, • and ignore astrophysical uncertainties: [Hummer, Baerwald, and Winter 12; see also Li 12; He et al 12]

  33. G-XG Transition at ~1018eV? Inconsistent spectrum G cutoff @ 1019eV @ 1018eV: Fine tuning [Katz & EW 09]

  34. UHECR sources: Suspects • Constraints:- L>1012 (G2/b) Lsun,G > 102.5 (L52)1/10 (dt/10ms)-1/5 • - e2(dQ/de) ~1043.7 erg/Mpc3 yr • - d(1020eV)<dGZK~100Mpc • !! No L>1012 Lsun at d<dGZK  Transient Sources • Gamma-ray Bursts (GRBs) • Lg~ 1019LSun>1012 (G2/b) Lsun= 1017 (G/ 102.5)2 Lsun • G~ 102.5 (L52)1/10 (dt/10ms)-1/5 • e2(dQ/de)g~ 1053erg*10-9.5/Mpc3 yr = 1043.5 erg/Mpc3 yr • Transient: DTg~10s << DTpg~105 yr • Active Galactic Nuclei (AGN, Steady): • G~ 101 L>1014LSun=few brightest • !! Non at d<dGZK  Invoke: • * “Hidden” (proton only) AGN • * L~ 1014LSun , Dt~1month flares • If e- accelerated: X/g observations  rare L>1017Lsun [EW 95, Vietri 95, Milgrom & Usov 95] [EW 95] [Blandford 76; Lovelace 76] [Boldt & Loewenstein 00] [Farrar & Gruzinov 08] [EW & Loeb 09]

  35. Bound implications: I. AGN n models “Hidden” (n only) sources Violating UHECR bound BBR05

  36. Single flavor Multi flavor [Anchordoqui & Montaruli 09]

  37. (Correct) detailed CR propagation models must agree with simple, analytic results derived from Ssec • Example: Diffusion models with {D~K0ed, box height L} reproduce data for parameter combinations shown in fig. [Maurin et al. 01] • Trivial explanation: • [Katz, Blum & EW 09] • Require • Ssec(e =35GeV) • to agree with the value inferred from B/C • Ssec =[3.2,3.45,3.9] g/cm2 • [green, blue, red]

More Related