330 likes | 515 Views
Bian Weihao Department of Physics, Nanjing Normal University. M BH - σ relation in AGNs. Outline. 1. SMBH masses in AGNs, M BH 2. Bulge velocity dispersion, σ 3. M BH - σ relation in AGNs. 1. SMBH masses in AGNs, M BH. ~10 17 cm. (Elvis et al. 1994). (Francis et al. 1991).
E N D
Bian Weihao Department of Physics, Nanjing Normal University MBH-σ relation in AGNs
Outline 1. SMBH masses in AGNs, MBH 2. Bulge velocity dispersion,σ 3. MBH-σrelation in AGNs
1. SMBH masses in AGNs, MBH ~10 17 cm (Elvis et al. 1994) (Francis et al. 1991)
SMBH virial mass mv2 – GmMBH /R = 0 MBH = v2R /G MBH m Schwarzschild radius: RS = 2GMBH/c2 =3MBH/Msun km = 3 × 1013 M8cm=10-2 M8lt-days.
Period: 15.6 years • R~2000 Rg • (Belgeman, 2003, Science, • 300, 1898) • M: (3-4)x106Msun • For S14: R~1000 Rg • Smaller R, • Stronger evidence S2
Virial Estimators Reverberation Mapping Technique is independent of angular resolution photoionization model: ionization source variance => emission line variance time delay X-Ray Fe K 3-10 RS Broad-Line Region 103 RS Megamasers 104 RS Gas 106 RS Stellar 106 RS t = t3 + t = t2 t1 – t2 = t = t3 t = t1
NGC 5548:RBLR~20 lt-days (~300 days) MBH~108Msun
For Quasar PG 0804+761: RBLR~156 lt-days (~6 Years) (Kaspi, et al. 2000, ApJ, 533,631)
RMS and mean spectrum Mainly from NLRs Boroson, 2003, ApJ, 585, 647 Peterson et al., 2004, ApJ, 613, 282
RBLR – L scaling relation r L1/2 • To first order, AGN spectra look the same • Baldwin Effect • C IV 1549, et al. • Origin? • Same ionization parameter • Same density SDSS composites Vanden Berk et al. astro-ph/0310840
To first order, quasar spectra look similar at all redshifts 744 Type I AGNs, 0< z< 5; Dietrich et al 2002, ApJ, 581, 912
Wu X., et al., A&A, 2004, 424, 793 Kaspi, et al. 2000, ApJ, 533,631 Kaspi et al. 2005, ApJ, 629, 61 McLure & Jarvis, 2002, MNRAS, 337, 109 MBH=f VFWHMRBLR2/G f=5.5 \pm 1.8 MBH-σrelation Onken et al., 2004, ApJ, 615, 645 Vestergaard & Peterson 2006 astro-ph/0601303 (H0=70 km/s/Mpc; ΩΛ = 0.7)
The slope of RBLR-L relation • Host galaxy light in Seyfert 1, the luminosity at the faint end. • 0.67 => 0.52 Bian et al., 2004, ChJAA, 4, 61 Bentz et al., 2006, astro-ph/0602412
Accuracy problem (dex) Reverberation 0.3 Zero-point, understand BLR f, Mapping MBH - relation: -- *bulge0.3Extend to luminous quasars Scaling Relations 0.5-0.6 R-L relationships, understand outliers -- [OIII] [OII] [SII]0.7 Understand scatter & outliers -- Fundamental?Quantify & establish higher Plane:e, re accuracy MBH – Lbulge 0.6-0.7Calibrate to reverberation mapped & scaling relations
2. Bulge velocity dispersion,σ Opt/IR spectra of host galaxies => σ Ca II triplet 8498、8542、8662\AA; Mg b triplet 5167、5172、5183\AA; Ca K+H 3934 3969 \AA Kauffmann et al. 2003, MNRAS, 346, 1055 Host galaxies of 22623 SDSS AGNs (Type II)
Vanden Berk, et al., 2006, AJ, 131, 84, SDSS AGNs, astro-ph/0509332
σ measurement • Fourier techniques: • cross-correlation; Fourier quotient; Fourier correlation quotient • Direct-fitting in pixel space: • stellar templates broadened by with σ g(n): host galaxy spectrum; t(n): template spectrum; B(n-δ): Gaussian broadening function X: cross-correlation *: convolution Rix & Whittle, 1992, MNRAS, 254, 389 Nelson & Whittle, ApJS, 1995, 99, 67 Kauffmann et al. 2003, MNRAS, 346, 1055 Cid Fernandes, et al., 2005, MNRAS, 358, 363 Greene & Ho, ApJ, 2005,astro-ph/0512462 Woo, et al., 2006, ApJ, astro-ph/0603648 t(x): template spectrum G(x): Gaussian broadening function C(x): AGNs continuum, power-law P(x): polynomial factor
σ - σ[O III] relation σ[O III] = FWHM([O III])/2.35 Nelson & Whittle, ApJS, 1995, 99, 67 McElory , 1995, ApJS, 100, 105 Kauffmann et al. 2003, MNRAS, 346, 1055 Ferrarese, et al. ApJ, 555 ,L79 Falomo et al., ApJ, 569, L35 Barth, et al., 2005, ApJ, 619, L151, 0412575 Greene & Ho, ApJ,2006, astro-ph/0512462 Woo, et al., 2006, ApJ, astro-ph/0603648 • Line asymmetries • Outflows • Radio sources (jet) • Interacting systems
Bian, Gu, Zhao, 2006, for 0.3< z 0.83 Type II AGNs SDSS J150117.96+545518.2
3. MBH-σrelation in AGNs AGNs Onken, et al., ApJ, 2004, 615, 245 Mass from reverberation mapping method is reliable.
Nelson, 2001, ApJ, 544, L91 σ[O III] = FWHM([O III])/2.35
Barth, et al., 2005, ApJ, 619, L151, 0412575 Keck II telescope
Greene Ho, ApJL, In press, astro-ph/0512461, 40+16 SDSS AGNs
MBH-σrelation in NLS1s 150 NLS1s from SDSS EDR (Williams R.J., Pogge R.W., Mathur S, 2003, AJ, 124, 3042) 22 NLS1s from HST observation (Constantin & Shields, 2003, PASP, 115, 592)
Bian & Zhao, MNRAS, 2004, 347, 607; Grupe & Mathur, 2004, ApJ, 606, L41; Botte, 2005, MNRAS, 356, 789 Barth, et al., 2005, ApJ, 619, L151 Zhou et al., 2006, astro-ph/0603759, ~308 σ,for a sample of ~2000 NLS1s from SDSS DR3 Dynamics of NLRs in NLS1s would be different than that of other AGN
Barth, et al., 2005, ApJ, 619, L151, Astro-ph/0412575 NLS1s ?? ~Z, L5100, L/LEdd
Theory on MBH–σrelation • Vittorini, Shankar, & Cavalier 2005, astro-ph/0508640 (BH growth history from merger/feedback events; simulation) • Robertson et al. 2005, astro-ph/0506038 (mergers simulation) • Di Matteo, Springel, & Hernquist 2005, Nature, 433, 604 (merger induced BH growth and starformation; simulation) • Springel, Di Matteo, & Hernquist 2005, MNRAS, 361, 776 (BH/star formation feedback; simulations) • Miralda-Escude & Kollmeier 2005, ApJ 619, 30 (stellar capture) • Sazonov et al. 2005, MNRAS 358, 168 (radiative BH feedback) • King 2003, ApJ 596, L27 (supercritical accretion, outflows) • Adams et al. 2003, ApJ 591, 125 (rotating BH collapse model) • ….and many more…..