1 / 41

decay index (kõduindeks) - kui monofüleetiline klaad esineb

decay index (kõduindeks) - kui monofüleetiline klaad esineb kõigis puudes, mis on 5 sammu pikemad kui MP puu, aga mitte kõigis, mis on 6 sammu pikemad, siis selle klaadi kõduindeks on 6. MP puu. 3. 1. 2. 4. ainus informatiivne positsioon. 2. 3. 4. 1. 1 ACACACACACACAC T

ledell
Download Presentation

decay index (kõduindeks) - kui monofüleetiline klaad esineb

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. decay index (kõduindeks) - kui monofüleetiline klaad esineb kõigis puudes, mis on 5 sammu pikemad kui MP puu, aga mitte kõigis, mis on 6 sammu pikemad, siis selle klaadi kõduindeks on 6

  2. MP puu 3 1 2 4 ainus informatiivne positsioon 2 3 4 1 1 ACACACACACACACT 2 CACACACACACACAT 3 CACACACACACACAC 4 TACACACACACACGC 2. 14 3. 15 1 4. 15 3 2 1 ACACACACACACAC-T 2-CACACACACACACAT 3-CACACACACACACAC 4-TACACACACACACGC

  3. viga joondamises või järjestuse lugemises

  4. puude juurimine

  5. puude juurimine MRCA

  6. puude juurimine

  7. puude juurimine NJ juure leidmine kaasaegsele inimesele MP

  8. networks consensus trees

  9. network as consenus võrk väljendab lahendamatust (ambiguity) kaks andmete poolt võrdselt toetatud puud

  10. 33 66 66 55 70 100 45 66 66 55 70 100 network as consenus 66 66 55 70 100

  11. networks splits H, C, G, O, B 0<s<2n-1 10 taksoni puhul < 512 juurimata puid >2 miljoni juuritud puid >34 miljoni

  12. 28 pos 13 pos O B H C H C G O B G 12 pos G C O B H networks

  13. spectral analysis

  14. reversible expected spectrum: spectral analysis puu: Hadamard transformation (Hendy, Penny 1993)

  15. spectral analysis

  16. networks

  17. ghost link parallelisms dBC=11 17

  18. networks Excoffier, Smouse 1994: minimum spanning trees, networks (MSN)

  19. TT TC TT TC TT TC CC CT CC CT CC CT TT TT TC TC CC CT CC CT networks

  20. networks TTC TCC TTT 15 trees CCC CTC CTT

  21. networks 4 x 4 x 4 = 64 trees

  22. networks Nuu-Chah-Nulth (Ward et al. 1991) 896 MP trees (Bandelt et al. 1995)

  23. A C F B D E root B A C D E F B A C D E F Networks and tie trees A C F B D E

  24. variation in Y-chromosome haplogroup 16 (Tat C): 3 STR loci

  25. networks

  26. 2 2 1 3 1 2 4 3 1 median networks 1

  27. median networks (MN) median network mapping all the actual data with consensus (median) vectors n dimensional hypercube 2 2 data 4 4 3 3 1 1

  28. 111 b c b c 001 100 010 MN includes consensus vector of the triplet ‘median vector’ a a median networks (MN) a) 000 b) 011 c) 101 ‘inetermediate vector’

  29. 000 0100 0010 110 1000 0001 101 011 median networks (MN)

  30. networks T median vectors A C CC, GA CG, AA AC, GG binary (0,1) data quaternary (A,C,G,T) data

  31. expansion RM networks split decomposition

  32. networks

  33. networks

  34. Reduced Median (RM) networks pre-processing: w (weight)

  35. RM networks Bandelt et al. 2000

  36. RM networks: reduction Network20Dhttp://www.fluxus-engineering.com/ Bandelt et al. 2000 ”Speedy constructions, greedy reductions”

  37. RM networks: reduction Bandelt et al. 2000 ”Speedy constructions, greedy reductions”

  38. RM networks: reduction Bandelt et al. 2000 ”Speedy constructions, greedy reductions”

More Related