410 likes | 593 Views
decay index (kõduindeks) - kui monofüleetiline klaad esineb kõigis puudes, mis on 5 sammu pikemad kui MP puu, aga mitte kõigis, mis on 6 sammu pikemad, siis selle klaadi kõduindeks on 6. MP puu. 3. 1. 2. 4. ainus informatiivne positsioon. 2. 3. 4. 1. 1 ACACACACACACAC T
E N D
decay index (kõduindeks) - kui monofüleetiline klaad esineb kõigis puudes, mis on 5 sammu pikemad kui MP puu, aga mitte kõigis, mis on 6 sammu pikemad, siis selle klaadi kõduindeks on 6
MP puu 3 1 2 4 ainus informatiivne positsioon 2 3 4 1 1 ACACACACACACACT 2 CACACACACACACAT 3 CACACACACACACAC 4 TACACACACACACGC 2. 14 3. 15 1 4. 15 3 2 1 ACACACACACACAC-T 2-CACACACACACACAT 3-CACACACACACACAC 4-TACACACACACACGC
puude juurimine MRCA
puude juurimine NJ juure leidmine kaasaegsele inimesele MP
networks consensus trees
network as consenus võrk väljendab lahendamatust (ambiguity) kaks andmete poolt võrdselt toetatud puud
33 66 66 55 70 100 45 66 66 55 70 100 network as consenus 66 66 55 70 100
networks splits H, C, G, O, B 0<s<2n-1 10 taksoni puhul < 512 juurimata puid >2 miljoni juuritud puid >34 miljoni
28 pos 13 pos O B H C H C G O B G 12 pos G C O B H networks
reversible expected spectrum: spectral analysis puu: Hadamard transformation (Hendy, Penny 1993)
ghost link parallelisms dBC=11 17
networks Excoffier, Smouse 1994: minimum spanning trees, networks (MSN)
TT TC TT TC TT TC CC CT CC CT CC CT TT TT TC TC CC CT CC CT networks
networks TTC TCC TTT 15 trees CCC CTC CTT
networks 4 x 4 x 4 = 64 trees
networks Nuu-Chah-Nulth (Ward et al. 1991) 896 MP trees (Bandelt et al. 1995)
A C F B D E root B A C D E F B A C D E F Networks and tie trees A C F B D E
2 2 1 3 1 2 4 3 1 median networks 1
median networks (MN) median network mapping all the actual data with consensus (median) vectors n dimensional hypercube 2 2 data 4 4 3 3 1 1
111 b c b c 001 100 010 MN includes consensus vector of the triplet ‘median vector’ a a median networks (MN) a) 000 b) 011 c) 101 ‘inetermediate vector’
000 0100 0010 110 1000 0001 101 011 median networks (MN)
networks T median vectors A C CC, GA CG, AA AC, GG binary (0,1) data quaternary (A,C,G,T) data
expansion RM networks split decomposition
Reduced Median (RM) networks pre-processing: w (weight)
RM networks Bandelt et al. 2000
RM networks: reduction Network20Dhttp://www.fluxus-engineering.com/ Bandelt et al. 2000 ”Speedy constructions, greedy reductions”
RM networks: reduction Bandelt et al. 2000 ”Speedy constructions, greedy reductions”
RM networks: reduction Bandelt et al. 2000 ”Speedy constructions, greedy reductions”