200 likes | 365 Views
Certificateless Threshold Ring Signature. Source: Information Sciences 179(2009) 3685-3696 Author: Shuang Chang, Duncan S. Wong, Yi Mu, Zhenfeng Zhang Presenter: Chun-Yen Lee. Outline. Introduction Definition Proposed scheme Conclusion. Introduction. 2001 Rivest et al. Ring signature
E N D
Certificateless Threshold Ring Signature Source: Information Sciences 179(2009) 3685-3696 Author: Shuang Chang, Duncan S. Wong, Yi Mu, Zhenfeng Zhang Presenter: Chun-Yen Lee
Outline • Introduction • Definition • Proposed scheme • Conclusion
Introduction • 2001Rivest et al. • Ring signature • 2002Bresson et al. • extended the notion of ring signature to threshold setting • 2003Al-Riyami and Paterson • certificateless public key cryptography
Ring signature • spontaneity • anonymity • Threshold setting • key escrow • certificateless public key cryptography
Outline • Introduction • Definition • Proposed scheme • Conclusion
Definition • SetUp • MasterKeyGen • PartialKeyGen • UserKeyGen • Sign • Verify
Outline • Introduction • Definition • Proposed scheme • Conclusion
An efficient 1-out-of-n certificateless ring signature A t-out-of-n certificateless Threshold Ring Signature (CL-TRS)
An efficient 1-out-of-n certificateless ring signature • SetUp • Input: • Output: param • MasterKeyGen • Input: param • Randomly pick a master secret key • Master public key
An efficient 1-out-of-n certificateless ring signature • PartialKeyGen • Input (param, msk, ID) • UserKeyGen • Input (param, mpk, ID) • Randomly pick a user secret key • user public key
An efficient 1-out-of-n certificateless ring signature • Sign • Input (param, mpk, R, S, m) • Randomly pick • Compute
An efficient 1-out-of-n certificateless ring signature • Compute • Compute • The signature is
An efficient 1-out-of-n certificateless ring signature • Verify • Input (param, mpk, R, 1, S, m, σ) • if
An efficient 1-out-of-n certificateless ring signature A t-out-of-n certificateless Threshold Ring Signature (CL-TRS)
CL-TRS • Sign • Input (param, mpk, R, S, m) • 1.
CL-TRS • 2. • 3. Compute • construct a polynomial fof degree n-t f(0)=c, f(i)=ci
CL-TRS • 4. Compute • 5.Compute • The signature is
CL-TRS • Verify • Input param, mpk, R, t, m, • the degree of polynomial f is n-t
Outline • Introduction • Definition • Proposed scheme • Conclusion
Conclusion • The author proposed one efficient 1-out-of-n CL-TRS and another t-out-of-n CL-TRS. • Both of them are more efficient than previous ones in both computational complexity and signature size.