1 / 24

AN EXAMPLE

AN EXAMPLE. motor. valve. V R. V L. tank2. tank1. turbine. generator. V R. K. V M. +. K. V M. V R. -. V L. V L. Comparator. v M =K(v R -v L ).  M. v M. T M. Motor (armature controlled). Motor data:. Armature winding resistance: R a. Armature winding inductance: L a.

lee-quinn
Download Presentation

AN EXAMPLE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AN EXAMPLE

  2. motor valve VR VL tank2 tank1 turbine generator 1.7 An example

  3. VR K VM + K VM VR - VL VL Comparator vM=K(vR-vL) 1.7 An example

  4. M vM TM Motor(armature controlled) Motor data: Armature winding resistance: Ra Armature winding inductance: La Motor constant: KM Back e.m.f. constant: Kb Rotor inertia: JM Shaft friction: BM 1.7 An example

  5. Ra La ia + eb -  T Jm Bm Armature controlled D.C. motor - revisited if=cnt. 1.7 An example

  6. ia ea  T + Km  - eb Kb T Model: A block diagram 1.7 An example

  7. For the problem at hand eb T  vM TM M BUT Mechanical load on the shaft should be the total load Including that due to the valve also 1.7 An example

  8. ia + Km - eb Kb Block diagram for the motor M TM VM • Where BM* & JM* show the total including the load 1.7 An example

  9. M TM Valve Data q0=KvM Shaft friction: Bv q0 Shaft inertia negligible 1.7 An example

  10. Kv M M q0 Valve model q0=KvM sM=M and BM*=BM+Bv , JM*=JM 1.7 An example

  11. q0 A1 A2 h1 h2 R1 R2 q1 q2 p1 p2 p3 Double tank:Definitions p1=h1 p2=h2 1.7 An example

  12. q0 h1 q0 h1 + - q1 q1 p1 Analysis Rate of change of heightXcross sectional area =added volume per unit time 1.7 An example

  13. p1 p2 R1 q1 h1 q1 + - h2 1.7 An example

  14. h2 q1 h2 + q1 q2 - p2 q2 1.7 An example

  15. p2 p3 R2 q2 h2 q2 + - p3 1.7 An example

  16. q0 h1 + q1 + h2 - - h2 + q1 - q2 Block diagram for the double tank system 1.7 An example

  17. p3 q2 TG G 0 Turbine Turbine inertia & friction negligible A lossless (transformer-like) element 1.7 An example

  18. iF TG G Generator Rotor inertia: JG vL Bearing friction: BG Field controlled type Field inductance: LF Field resistance: RF 1.7 An example

  19. Rf Lf if + ef  T Jm Bm Field controlled D.C. motor Fix armature current! ia=Cnt. Tm=Kmif 1.7 An example

  20. if ef  T Km Block diagram model 1.7 An example

  21. Lf Rf + vL IL ia=Cnt. if Jm JG Jm Bm Bm BG G TG 1.7 An example

  22. TG G N KG BG+sJG h2 iF vL N q2 iF=KGTG 1.7 An example

  23. M q0 M h1 q1 VL VM - + ωG if ia TG + + + + VR K Kv N BG+sJG KG RF+sLF - - - h2 - q2 VL N comparator motor valve double tank turbine-generator 1.7 An example

  24. End of Chapter Restart section Next chapter Restart chapter i The End General index End show 1.7 An example

More Related