160 likes | 312 Views
Bayesian Inference. Will Penny. Wellcome Department of Imaging Neuroscience, University College London, UK. SPM Course, London, May 2004. Bayesian Inference. Gaussians Posterior Probability Maps (PPMs) Hemodynamic Models (HDMs) Comparing models (DCMs). One parameter.
E N D
Bayesian Inference Will Penny Wellcome Department of Imaging Neuroscience, University College London, UK SPM Course, London, May 2004
Bayesian Inference • Gaussians • Posterior Probability Maps (PPMs) • Hemodynamic Models (HDMs) • Comparing models (DCMs)
One parameter Likelihood and Prior Posterior Likelihood Prior Posterior Relative Precision Weighting
Posterior Probability Maps - PPMs Bayesian parameter estimation Least squares parameter estimation Shrinkage priors No Priors
Prior Prior: mi 1/a=1
Data Likelihood: yi i=1..V=20 voxels n=1..N=10 scans
Least Squares Estimates Error=7.10
Bayesian Estimates E-Step: M-Step: Iteration 1 Error=7.10
Bayesian Estimates E-Step: M-Step: Iteration 2 Error=2.95
Bayesian Estimates E-Step: M-Step: Iteration 3 Error=2.35
SPMs and PPMs PPMs: Show activations of a given size SPMs: show voxels with non-zero activations
Hemodynamic Models - HDMs Photic Motion Attention fMRI study of attention to visual motion
PPMs Advantages Disadvantages Use of shrinkage priors over voxels is computationally demanding Utility of Bayesian approach is yet to be established One can infer a cause DID NOT elicit a response SPMs conflate effect-size and effect-variability
Photic Photic SPC SPC SPC 0.96 0.85 0.70 0.84 1.36 0.96 V1 V1 V1 0.06 -0.02 V5 0.39 0.57 V5 V5 Motion Motion 0.23 0.58 Attention Attention Photic 0.86 0.75 1.42 0.89 Attention 0.55 -0.02 0.56 Motion Comparing Dynamic Causal Models m=2 m=1 m=3 Bayesian Evidence: Bayes factors: