210 likes | 302 Views
Thermal phase transitions in realistic dense quark matter. Taeko Matsuura (Tokyo) K. Iida (RIKEN BNL) M. Tachibana (RIKEN) T. Hatsuda (Tokyo). Physical Review Letters 93 (2004) 132001 hep-ph/0411356 (to appear in PRD).
E N D
Thermal phase transitions in realistic dense quark matter Taeko Matsuura (Tokyo) K. Iida (RIKEN BNL) M. Tachibana (RIKEN) T. Hatsuda (Tokyo) Physical Review Letters 93 (2004) 132001 hep-ph/0411356 (to appear in PRD)
Realistic QCD phase diagram(Nf=3) Idealized QCD phase diagram (Nf=3) mu,d ~0 and ms ~200 MeV beta equilibrium charge neutral “external fields” T T dm mu,d,s =0 QGP QGP 2SC dSC mCFL Hadron Hadron Color superconductor (CFL) μ μ
Examples of new phases driven by external fields unequal Fermi moms for ( ) and ( )
Color Superconductor (without m, dm ) Entangled pairing in color-flavor space (momentum)
quark mass ms >> mu,d 0, • beta equilibrium d m i= -qime (i=u, d, s) • electric neutrality Q=Qquark +Qelectron=0 • color neutrality nR= nB= nG major role minor role Realistic quark matter at T~Tc Why we consider T~Tc ? Effect of the ext. field (m, dm )prominent Ginzburg-Landau expansion possible (Δ<< Tc )
Tc ms2 μ Color Superconductor (with m, dm ) near Tc Ext. fields: ・ What kind of phase structure near Tc? ・ What are the quark & gluon spectra ?
Δ Δ T>Tc T<Tc Corrections from quark mass & charge neutrality Corrections from color neutrality Ginzburg-Landau free energy Near Tc (Δ << Tc)
High density QCD → GL free energy small external fields • m=0, dm=0Iida & Baym, PRD (`01)
m≠0, dm≠0 Iida,Matsuura,Tachibana,&Hatsuda, PRL (2004) O(Δ2ms2) Flavor Flavor dependent shift of the GL free energy
shift of critical temperature Larger averaged Fermi mom. More stable pairing
New phase : dSC m , dm ≠0 m ,dm =0 T normal normal Second order phase transitions (MFA) CFL 2SC dSC mCFL
elementary excitation spectra • Gluons • Quasi fermions • (Nambu-Goldstone bosons) ●Gluons (Meissner masses)
e e Unpaired case Paired case p p ● Gapless quasi-fermions Cf. Alford, Berges & Rajagopal (`99), M.Huang & I.Shovkovy (`03) normal phase T mCFL dSC 2SC unpaired 0 0 2 2 5 5 9 paired 0 2 1 3 0 4 0
summary We studied the phase structure near CSC ⇔ QGP boundary with strange quark mass and charge neutrality using Ginzburg-Landau theory m and dm lead to Flavor dependent pF Pairing occur between quarkswith different pF gapless fermion appearsat very close to Tc
thermal phase structure in the mean-field approx. (MFA) & new dSC phase (this work) T Order of the phase transition may change. (beyond MFA) Matsuura, Iida, Hatsuda, and Baym, PRD 074012(2004) QGP 2SC dSC mCFL Hadron gCFL,g2SC, uSC,CFLK,FFLO, BEC,・・・ μ
k k Meissner mass Ginzburg-Landau (T ~Tc) local coupling to gluons mA2 >0 (always) QCD nonlocal coupling to gluons δ > 0.3041 ×2πkB T mA82 , κ < 0 unstable to FFLO δ < 0.3041 ×2πkB T ← our case mA82 , κ > 0 stable to FFLO 2δ κ:momentum susceptibility Giannakis & Ren (hep-ph/0412015)
Why color neutrality does not play role ? T μe normal Tc μe,μ8 super μ8
“BCS”pairing(zero free energy condition) F=E-μN FFLOpairing μu <μd ku=q + pkd=q – p
Δ~σTc dT μ ~σTc Order of Δ and δT Effect of Fluctuation ⇒ dT ~ g2 Tc or gTc>>σTc(at high density)
T ~0 vs T ~Tc P A δ<< Tc B C T ~0 difference is important T ~Tc average is important