340 likes | 530 Views
On the Multifractal Dimensions at the Anderson Transition. Imre Varga Departament de Física Teòrica Universitat de Budapest de Tecnologia i Economia , Hongria. Imre Varga Elm életi Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem, H-1111 Budapest, Magyarország.
E N D
On the Multifractal Dimensionsat the AndersonTransition Imre Varga Departament de Física Teòrica Universitat de Budapest de Tecnologiai Economia, Hongria Imre Varga Elméleti Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem, H-1111 Budapest, Magyarország Coauthors: José Antonio Méndez-Bermúdez, AmandoAlcázar-López (BUAP, Puebla, México) thanks to : OTKA, AvH
Outline • Introduction • The Anderson transition • Essential features of multifractality • Random matrix model: PBRM • Heuristic relations forgeneralizeddimensions • Spectral compressibility vs. multifractality • Wigner-Smith delay time • Further tests • Conclusions and outlook
Anderson’s model (1958) • Hamiltonian • Energiesenuncorrelated, randomnumbers from uniform(bimodal, Gaussian, Cauchy, etc.) distribution W • Nearest-neighbor„hopping” V (symmetries:R, C, Q) • Bloch states for W V, localized states for W V W V?
Anderson localization Sridhar 2000 Billyet al. 2008 Jendrzejewskiet al. 2012 Hu et al. 2008
Spectral statistics • W <Wc • extended states • RMT-like: • W > Wc • localizedstates • Poisson-like: • W = Wc • multifractalstates • intermediatestat. ‘mermaid’ semi-Poisson RMT
Eigenstates at small and largeW Extended state Weak disorder, midband Localized state Strong disorder, bandedge (L=240) R.A.Römer
Multifractal eigenstate at the critical point http://en.wikipedia.org/wiki/Metal-insulator_transition (L=240) R.A.Römer
Multifractal eigenstate at the critical point • Inverse participation ratio • higher precision • scaling withL • Box-counting technique • fixedL • „state-to-state”fluctuations • PDF analyzis
Multifractal eigenstate at the critical point Do these states exist at all? Yes
Multifractal states in reality LDOS változása a QH átmeneten keresztül n-InAs(100) felületre elhelyezett Cs réteggel
Multifractal states in reality LDOS fluctuations in the vicinity of the metal-insulator transition Ga1-xMnxAs
Multifractality in general • Turbulence (Mandelbrot) • Time series – signal analysis • Earthquakes • ECG, EEG • Internet data traffic modelling • Share, asset dynamics • Music sequences • etc. • Complexity • Human genome • Strange attractors • etc. Common features • self-similarity across many scales, • broad PDF • muliplicative processes • rare events
Multifractality in general • Very few analytically known • binary branching process • 1d off-diagonal Fibonacci sequence • Baker’s map • etc • Numerical simulations • Perturbation series (Giraud 2013) • Renormalization group - NLM – SUSY (Mirlin) • Heuristic arguments
Numerical multifractal analysis Parametrization of wave function intensities Theset of pointswherescales with Scaling: • Box size: • System size: Averaging: • Typical: • Ensemble:
Numerical multifractal analysis Parametrization of wave function intensities Theset of pointswherescales with • convex • Symmetry (Mirlin, et al. 06)
Numerical multifractal analysis Generalized inverse participation number, Rényi-entropies Mass exponent, generalized dimensions Wave function statistics parabolic og-normal
Numerical multifractal analysis applicationtoquantumpercolation, seeposterby L. Ujfalusi Rodriguezet al. 2010
Correlations at the transition Interplay of eigenvector and spectralcorrelations • q=2, Chalker et al. 1995 • q=1, Bogomolny 2011 Cross-correlation of multifractaleigenstates Auto-correlation of multifractaleigenstates Enhanced SC Feigel’man2007 Burmistrov 2011 New Kondophase Kettemann 2007
Effect of multifractality(PBRM) Generalize! Take the model of the model! PBRM (a random matrix model)
b PBRM: Power-law Band Random Matrix • model: matrix, • asymptotically: • free parameters and Mirlin, et al. ‘96, Mirlin ‘00
PBRM Mirlin, et al. ‘96, Mirlin ‘00
weakmultifractality • strong multifractality Mirlin, et al. ‘96, Mirlin ‘00
Generalizeddimensions JAMB és IV (2012)
PBRM atcriticality General relations Spectralstatistics and e.g.: JAMB és IV (2012)
Higher dimensions, 2dQHT Replace For using 3dAMIT JAMB és IV (2012)
Surpisingly robust and general Different problems • Random matrix ensembles • Ruijsenaars-Schneider ensemble • Critical ultrametric ensemble • Intermediate quantum maps • Calogero-Moser ensemble • Chaos • baker’s map • Exact, deterministic problems • Binary branching sequence • Off-diagonal Fibonacci sequence JAMB és IV (2013)
Scattering: system + lead • Scatteringmatrix • Wigner-Smith delay time • Resonance widths: eigenvalues of polesof
Scattering: PBRM + 1 lead • JA Méndez-Bermúdez – Kottos ‘05 Ossipov – Fyodorov ‘05: • JA Méndez-Bermúdez – IV06:
Scattering exponents Wigner-Smith delay time JAMB és IV (2013)
Summary and outlook • Multifractal states in general • Randommatrixmodel (PBRM) • heuristic relations tested for many models, quantities • New physicsinvolved • Kondo, SC, graphene, etc. • Outlook • Interactingparticles (cf. Mirlinet al. 2013) • Decoherence • Proximityeffect (SC) • Topologicalinsulators Thanks for your attention