1 / 16

Secondary Vertex reconstruction for the D +

Secondary Vertex reconstruction for the D +. Elena Bruna University of Torino. ALICE Physics Week Erice, Dec. 6 th 2005. Outline. Three different methods to find the secondary vertex for D + → K - π + π + Comparison between the methods  find the candidate for the D + analysis

lela
Download Presentation

Secondary Vertex reconstruction for the D +

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Secondary Vertex reconstruction for the D+ Elena Bruna University of Torino ALICE Physics Week Erice, Dec. 6th 2005

  2. Outline • Three different methods to find the secondary vertex for D+→ K-π+π+ • Comparison between the methods  find the candidate for the D+ analysis • Tuning of the cuts on the tracks used to “feed” the vertexer • Future plans Elena Bruna

  3. Originally developed to find the primary vertex in p-p Based on the Straight Line Approximation of a track (helix) Main steps The method receives N (N=3 in our case) tracks as input Each track is approximated by a straight line in the vicinity of the primary vertex An estimation of the secondary vertex from each pair of tracks is obtained evaluating the crossing point between the 2 straight lines The coordinates of secondary vertex are determined averaging among all the track pairs: Straight Line Vertex finder Elena Bruna

  4. Add a cut on the distance of closest approach (DCA) between the two straight lines A pair of tracks is not used for the vertex estimation if their distance of closest approach is > fDCAcut Use a weighted mean of the 2 DCA points In order to take into account the errors on the tracks parameters Use the track as helix, without the straight line approximation Calculate a parameter representing the dispersion of the vertices given by the track pairs (fSigma) Improvements on the Straight Line Vertex Finder Elena Bruna

  5. 1. DCA cut effect fDCAcut = 1.5 mm fDCAcut = 0.7 mm RMS=179 μm RMS=178 μm Finder- MC (mm) Finder- MC (mm) RMS=182 μm RMS=181 μm Finder- MC (mm) Finder- MC (mm) RMS=165 μm RMS=163 μm Finder- MC (mm) Finder- MC (mm) No DCAcut X coord RMS=179 μm Finder- MC (mm) Y coord RMS=183 μm Finder- MC (mm) Z coord RMS=166 μm Elena Bruna Finder- MC (mm)

  6. 2. Weighted mean effect Weighted mean RMS=179 μm Finder- MC (mm) Improved resolution on Z RMS=183 μm Finder- MC (mm) RMS=160 μm Finder- MC (mm) Arithmetic mean X coord RMS=179 μm Finder- MC (mm) Y coord RMS=183 μm Finder- MC (mm) Z coord RMS=166 μm Elena Bruna Finder- MC (mm)

  7. 3. Results from the helix finder Helix Finder RMS=169 μm Helix finder has better resolution and also a lower number of overflows and underflows (≈400 instead of ≈650) Finder- MC (mm) RMS=171 μm Finder- MC (mm) RMS=162 μm Finder- MC (mm) Straight Line Finder X coord RMS=179 μm Finder- MC (mm) Y coord RMS=183 μm Finder- MC (mm) Z coord RMS=166 μm Elena Bruna Finder- MC (mm)

  8. Same distribution for Helix and Straight Line finder 4. Vertices dispersions The DCA cut reduces the dispersion Dispersion fSigma = standard deviation of the 3 vertex estimations obtained from each track pair Str. Line Finder Str. Line with DCA cut Helix Finder with DCA cut fSigma (cm) Elena Bruna

  9. New secondary vertex finder d Straight Line Approximation used → analytic method Vertex coordinates (x0,y0,z0) from minimization of: Where:d1,d2,d3are the distances (weighted with the errors on the tracks) of the vertex from the 3 tracks: P1 (x1,y1,z1) σx = σy Vertex (x0,y0,z0) Elena Bruna

  10. Resolution of the vertex finder RMS x RMS y At high Pt of D+ (Pt>5-6 GeV/c), the RMS in the bending planeincreases, instead of going down to ~15µm (spatial pixel resolution) as expected. RMS z Conclusion New method improves RMS of ~40μm for PtD+ ~ 2GeV/c for x, y and z with respect to previous Helix vertex finder based on DCA of pairs of tracks. Elena Bruna

  11. Resolution at high Pt /1 Checks with events only made of pions show that the RMS on the bending plane: • Decreases down to 50 µm if the 3 tracks have Pt ~ 2 GeV/c • Reaches a value of ~20 µm (in agreement with spatial pixel resolution) if the 3 tracks have Pt =100 GeV/c 3 pion vertex:RMS in the bending plane vs. Pt Elena Bruna

  12. Resolution at high Pt /2 y y x’ y’ rotated x x In the signal events, as the Pt of the D+ increases, the “daughters” become more and more co-linear, resulting in a worse resolution along the D+ direction. π+ π+ K- bending plane D+ Elena Bruna

  13. Resolution in the rotated frame Along the Pt of the D+ (x’ coord.) Orthogonal to the Pt of the D+ (y’ coord.) → Along the Pt of the D+: as Pt increases (for Pt>5-6 GeV/c) the angles between the decay tracks become smaller: in this coordinate the RMS increases → Orthogonal to the Pt of the D+: the RMS decreases as expected Elena Bruna

  14. Vertices dispersions/1 Δx = XVertex FOUND – XVertex MC Δx < 1000 μm 1000<Δx <3000 μm 3000<Δx <5000 μm Δx > 5000 μm fSigma bigger for bad vertices fSigma (cm) Elena Bruna

  15. Vertices dispersions/2 Cut on fSigma (for X coordinate) Vertices taken / Vertices Tot (“True” vertices) “Fake” vertices (tracks coming from 3 different D+ vertices) RMS x (μm) Mean x (μm) • fSigma < 0.7 cm cuts ~1% of the events and gives a RMS of 130 μm • fSigma < 0.5 cm cuts ~6% of the events and gives a RMS of 110 μm Elena Bruna

  16. The Straight Line vertex finder: DCA cut: negligible effect on the RMS of the residual distributions, slightly reduced number of overflows and underflows The use of a weighted mean: improves Z resolution by ≈6 mm Cutting on the dispersion fSigma: removes the events for which the VertexFinder misses the true vertex by more than 1 mm and improves the resolution Conclusions on the finders • The Helix vertex finder: • Has better resolution w.r.t. Straight Line finder (by approximately 10 mm) • Has less overflows and underflows w.r.t. Straight Line finder • DRAWBACK: the DCA between helices is obtained by minimization • DCA cut, weighted mean and fSigma cut: improve the resolution • The Minimum Distance vertex finder: • Has better resolution w.r.t. Helix finder (by approximately 30 mm) • Has less overflows and underflows w.r.t. previous finders • Is an analytic method • Weighted mean and fSigma cut: improve the resolution • Is presently THE candidate for first D+ analysis • A cut on fSigma has to be tuned (it can be done at analysis level) Elena Bruna

More Related