370 likes | 531 Views
Time Space Domain Decomposition for Reactive Transport in Porous Media. Anthony MICHEL. Contributors. Florian Haeberlein PhD Student, IFPEN He will defend his PhD next week ( 14/11/2001) Laurence Halpern, Paris 13, LAGA L.Trenty, J.M.Gratien, A.Anciaux, IFPEN M.Kern, INRIA
E N D
Time Space Domain Decomposition for Reactive Transport in Porous Media Anthony MICHEL
Contributors • Florian Haeberlein PhD Student, IFPEN • He will defend his PhD next week ( 14/11/2001) • Laurence Halpern, Paris 13, LAGA • L.Trenty, J.M.Gratien, A.Anciaux, IFPEN • M.Kern, INRIA • T.Parra, Geochemistry Dpt, IFPEN • D.Garcia, J.Moutte, ENSMSE
Outlook • Part1. Motivation • CO2 geological storage modeling • CO2 reactivity distribution • ANR-SHPCO2 Project • Part 2. Reactive Transport Modeling • Reactive chemical system • Local reactive flash model • Global reactive transport model • Part 3.Time Space Domain Decomposition • Subdomains • Non linear DD Method • Reactive subdomain definition • Part 4. Case Studies • Case study 1. Laboratory experiment • Case study 2. SHPCO2 Use Case
Part 1 Motivation
CO2 Geological Storage Storage
CO2 Geological Storage Modelling Geological Storage = Aquifer + Seal Chemical System 100 m CH4 H2O Gas CO2 10 km Na+ CO2 Cl- H2O Salt Water Porous Media HCO3- OH- Fe++ H+ Mg++ Ca++ Rock Connectivity Texture
CO2 Reactivity - Physical Distribution ( Garcia, 2008 ) CO2 Carbonatation Effects
CO2 Reactivity – Numerical Distribution Local time Stepping Acid Front Reactivity Time step reduction is due to :- Strong non linearities - High species concentration ratios - What else ?? Low Very Low High
SHPCO2 Project • ANR-CIS 2007 • 4 years project • From 2008 to 2011 Simulation Haute Performance du Stockage Géologique de CO2
SHPCO2 Project Structure Numerical Models Integration and Coupling Newton Krylov + Preconditioners SP2 SP1 SP5 SP4 Real Study Test Case SP3 CPU-Time Time Space Domain Decomposition Parallel Computing and Load Balancing
Real Study Test Case ( Gaumet, 1997) Carbonates Layering
Real Study Test Case ( Gabalda, 2010) Dogger, Paris Basin Geological Model
Part 2 Reactive Transport Modeling
Reactive Chemical System Phases and Species Equilibrium Reactions components W T x1 x2 c2 c1 fluid c I 0 x3 x4 primary species I q 0 x Scx 0 solid q2 q1 z1 z2 secondary species z 0 Scz Kinetic Reactions q -> Skc*c + Skx*x (Dissol) Rkin (Precip) q <- Skc*c + Skx*x
Local Reactive Flash Model c q • Mass Balance Equations [qw c] + Scx [qw x] + Scz [qz z] = T [qq q] = W • Equilibrium Equations ln(x) = ln(Kx) + Sxc [ ln(c)] ( qw > 0 ) ln(z) = ln(Kz) + Szc [ ln(c)] or ( qz = 0 ) • Closure Equations S c + S x = 1 z = 1 q = 1 x z qw qz qq
Global Reactive Transport Model C • Mass Balance Equations • Closure Equations W T F (X) • Constitutive Laws RT,kin (X) (X) RW,kin
Fast Upwind Local Reactive Transport Model + qout * qin*Cin • Mass Balance Equations • Closure Equations local local local (X) • Constitutive Laws (X) (X)
Part 3 Time Space Domain Decomposition
Time Space DD – Continuous Subdomains t T+Dt T G1 W1 x W2 G2
Time Space DD – Discrete Subdomains t T+Dt T W1 x W2
Time Space DD – Local Subdomain Problem l2 l1 t B2 p21 B1 T+Dt A1 u1 + R1(u1) = F1 B1 u1 = l1 T l2=B2 p21 u1 W1 G1 x G2
Time Space DD – Global Coupled Problem A u + R(u) = F A2 u2 + R2(u2) = F2 B2 u2=l2 A1 u1 + R1(u1) = F1 B1 u1 = l1 l1 =B1 p12u2 l2=B2 p21 u1
Time Space DD – Classical Nonlinear Solver U1*= p21 u1* U2*= p12u2* l2* =B2u1* l1*=B1u2* A1 u1 + R1(u1) = F1 B1 u1 = l1* A2 u2 + R2(u2) = F2 B2 u2=l2*
Is Fast Upwind RT a Time Space DD Method ? Bk(Ck) = Flux(Ck)in = l(Ck-1) Dt 0 ncell k-1 k k+1 1 Downwind Sweeping
Reactive Subdomain Definition - React(cell) = |Rkin|(cell) / Max (|Rkin|(cell)) TolReact = 0.4, 0.2 - D1 = {React (cell) > TolReact } NCellSecurity = 2 - D2 = D1 + NCellSecurity - Wreact = D2 + NCellOverLap NCellOverLap = 4 High Reactive Zone Security Layer OverLap
Numerical Efficiency Results Two Species Reactive Transport Classical / Nested / Common … Newton Iterations
Link with other NL Preconditionners … Cf Jan Nordbotten Talk, Yesterday
Part 4 Case Studies
Case study 1 – Laboratory Experiment External Boundary Aqueous Solution Fixed pCO2 Plug Boundary Study Domain R1 Reacted Cement R2 Reactive Front Core Cement
Case study 1 – Laboratory Experiment Simplified Overall Reaction Scheme Portlandite + CO2(aq) -> Calcite Wollastonite -> CaO(aq) + Silice [CO2aq] CaOaq + CO2aq ->Calcite [CaOaq] Silice -> SiO2aq
Case study 1 – Laboratory Experiment Aqueous Species Reactive Subdomain Minerals Movies …
Case study 2 - SHPCO2 Use Case Trapped Supercritical CO2 Regional Hydrodynamics Barreers
Case study 2 - SHPCO2 Use Case Movies …
Perspectives • Global Solver Efficiency and Robustness • Find a robust linear solver and preconditionner • Optimize local computations in the reactive flash • Improve newton convergence criterias • Re-Visit the Fast Upwind Method • Compare efficiency of the two methods • Improve Efficiency of our Time-Space DD Solver • Define good criterias for reactive subdomains • Add appropriate metrics for the nested loops