1 / 45

Claudio F. R. Geyer II - UFRGS Inês de Castro Dutra COPPE - Sistemas - UFRJ

Parallelism in Logic Programming. Claudio F. R. Geyer II - UFRGS Inês de Castro Dutra COPPE - Sistemas - UFRJ. Outline. Introduction Sequential Implementation Parallel Implementation Performance Conclusions Future Work. Introduction. Why logic programming? Formal basis

lenore
Download Presentation

Claudio F. R. Geyer II - UFRGS Inês de Castro Dutra COPPE - Sistemas - UFRJ

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Parallelism in Logic Programming Claudio F. R. Geyer II - UFRGS Inês de Castro Dutra COPPE - Sistemas - UFRJ

  2. Outline • Introduction • Sequential Implementation • Parallel Implementation • Performance • Conclusions • Future Work

  3. Introduction • Why logic programming? • Formal basis • expression power • implicit parallelism • suitability to some problems • Main Language: Prolog • syntax • declarative and operational semantics

  4. parent(arthur,carol). parent(carol,john). grandparent(X,Y) :- parent(X,Z), parent(Z,Y). length([H|T],N) :- length(T,N1), N is N1+1. length([],0). Introduction

  5. Sequential Implementation • Interpreters x Compilers • WAM (WarrenAbstract Machine) • structure copying • environments • choicepoints • heap • trail

  6. Sequential Implementation

  7. Parallel Implementation • Control Parallelism • ORP: Or-parallelism • ANDP: And-parallelism • And + Or • Data Parallelism • Unification • Path

  8. Parallel Implementation: ORP • Problems • representation of multiple bindings to the same variable • Solutions • stack sharing • stack copying

  9. Parallel Implementation: ORP

  10. Parallel Implementation: ORP • Stack sharing • binding arrays • hash windows • version vectors • variable importation • …

  11. Parallel Implementation: ORP • Speculative work • Prolog semantics? • Side-effects and pruning • Scheduling

  12. Parallel Implementation: ANDP • IAP: Independent and-parallelism • DAP: Dependent and-parallelism • DetAP: Determinate and-parallelism

  13. Parallel Implementation: IAP • Goals that do not share variables can proceed in parallel. • Compiler support • CGEs: Conditional Graph Expressions

  14. Parallel Implementation: IAP paper(P,A,D,L) :- author(A), date(D), loc(P,A,D,L). Possible CGE: indep(A) & indep(D) => author(A) & date(D),loc(P,A,D,L)

  15. Parallel Implementation: IAP • Cross-product of solutions • Recomputation qsort([], []). qsort([P|T],L) :- partition(T,P,A,B), qsort(A,L1), qsort(B,L2), append(L1,[P|L2],L).

  16. Parallel Implementation: DAP • Goals that share variables can proceed in parallel • Producer and consumer • Chosen at compile-time or runtime • one value or stream • Compiler support

  17. Parallel Implementation: DAP producer(N,Out) :- N > 0, N1 is N - 1, Out = [ferrari|Ms], producer(N1,Ms). producer(0,Out) :- Out = []. consumer([ferrari|Ms]) :- go-ride-ferrari, consumer(Ms). consumer([]).

  18. Parallel Implementation: DetAP • Goals that match at most one clause can be executed first and in parallel • Compiler support • Reduction of search space

  19. Parallel Platforms • Shared-memory • Distributed memory • Distributed-shared memory • Implicit x Explicit Parallelism • Programming Model • Process or processor-based

  20. Shared-memory Or-Parallel Systems • Aurora • WAM-based • processor-based • shared stacks • binding arrays

  21. Aurora: Binding Arrays

  22. Shared-memory Or-Parallel Systems • Scheduling in Aurora • Wavefront • Argonne • Manchester • Bristol • Dharma

  23. Shared-memory Or-Parallel Systems • Wavefront, Manchester and Argonne: topmost dispatching • Bristol and Dharna: bottom-most dispatching • speculative work

  24. Shared-memory Or-Parallel Systems • Muse • WAM-based • processor-based • stack copying

  25. Muse: Stack Copying • Multiple environments maintained via stack-copying • Memory space divided into identical address spaces to avoid pointer relocation • Incremental copying

  26. Shared-memory Or-Parallel Systems • Scheduling in Muse • Sophisticated operations to avoid data race • workers keep data structures about idle and busy workers below their subtrees • Shadowing • Preference to leftmost work

  27. Shared-memory And-Parallel Systems • &-Prolog • &ACE • DASWAM

  28. Shared-memory And-Parallel Systems • &-Prolog • RAP-WAM • CGEs • compiler support • &ACE • based on &-Prolog • DASWAM • DAP and IAP, producer determined at runtime

  29. Shared-memory And+Or Systems • Andorra-I • ACE • SBA • ParAKL • Penny • DAOS

  30. Andorra-I • Determinate and-parallelism • or-parallelism • side-effects, cuts and commits • teams of workers • scheduling • reduction of search space

  31. Andorra-I DetAP phase #det goals = 0 ORP phase #det goals <> 0

  32. Shared-memory And+Or Systems • ACE • IAP + ORP • Stack copying • IAP a la &-Prolog • Composition tree • Last parallel call optimisation

  33. ACE

  34. SBA • IAP + ORP • Stack sharing • Shared Binding Arrays • IAP a la &ACE • Binding array divided into fixed segment sizes • Conditional variable bound to a pair <seg#,offset>

  35. PerformanceAndorra-I

  36. Performance prog name Andorra-I JAM Aurora Muse nrv400 8.25 8.37 ---- ---- bt_cluster 9.37 9.70 ---- ---- bt_wms 3.32 ---- ---- ---- road_markings 6.24 ---- ---- ---- chat_80_db5 7.30 ---- 7.30 5.91 5x4x3_puzzle 9.66 ---- 9.51 8.69 warplan 1.20 ---- 2.63 1.06 protein_all 6.81 ---- 9.49 8.64 protein_1st 2.78 ---- 4.10 3.12 fly_pan 6.88 ---- ---- ---- scanner 5.47 ---- ---- ---- cipher 5.65 ---- ---- ----

  37. Performance Pgm map 8queen Xword 8queenp zebra flypan Prolog 5003 383146 6377 133612 19404 10539 Andorra-I 1047 214918 835 8496 5757 1517 Reduction in search space

  38. Performance: bt_cluster

  39. Performance: chat-80

  40. Performance: floorplan design

  41. Applications • Optimisation Problems • Databases • Natural Language Processing • Data Mining • Constraint Satisfaction Problems • ….

  42. Conclusions • Logic programming: high level of abstraction • Favours Implicit Parallelism • Several applications • Good performance on small to medium parallel architectures • High performance is coming!

  43. Future Work • More efficient methods to combine and + or parallelism • Scheduling is an important issue • Sophisticated compiler support • Memory management • Parallel constraint logic programming • Efficient cluster implementations • Applications

  44. Future Work Ideal System

  45. Perspectives

More Related