220 likes | 332 Views
title. Trapper Drives Lynx to Eat Hare. Bo Deng February 2006 UNL. title. 2d Model. Comprehensiv Predator-Prey Model. H --- Hare Population L --- Lynx Population r = b 1 – d 1 --- Hare Per-Capita Intrinsic Growth Rate
E N D
title Trapper Drives Lynx to Eat Hare Bo Deng February 2006 UNL
title • 2d Model Comprehensiv Predator-Prey Model H ---Hare Population L ---Lynx Population r = b1 – d1---Hare Per-Capita Intrinsic Growth Rate K =m1/ b1 – d1---Hare Carrying Capacity mi---Interspecific Competition Parameters bi---Birth-to-Consumption Ratio di---Natural Per-Capita Death Rate ai---Probability Rate of Discovery hi---Handling Time Per-Prey
Basic Models • 2d Model
Elton & Nichoslon 1942 (Odum 1953) Hare Eats Lynx Cycle Guilpin’s Disease Explanation 1973
title • 3d Model HLT Model 1 H ---Hare Population L ---Lynx PopulationT ---Trapper Population b3---Fur Collection-to-Recruitment Ratio d3---Per-Capita Retirement Rate m3---Bankruptcy or Consolidation Rate h2---Handling Time Per-Catch
title • 3d Model Assumption: Hare capacity is mediated by trapper K = K (T ) =K0 (T + T0) / (T + T1) K K0 0 T HLT Model 2 H ---Hare Population L ---Lynx PopulationT ---Trapper Population K(T)---Trapper Mediated Capacity b3---Fur Collection-to-Recruitment Ratio d3---Per-Capita Retirement Rate m3---Bankruptcy Rate h3---Handling Time Per-Catch
Basic Models • Comparison K K K0 K0 0 T 0 T H-L Cycle L-H Cycle Hare and Trapper oscillate in-phase Hare and Trapper oscillate out-phase
W.M. Shaffer `… Evidence for a Strange Attractor in Nature?’ Amer. Nat. 1984 Time-Delayed Embedding Method: F. Takens, 1981
Field Studies Lyapunov Exponent Logistic Map Def. of Lyapunov Exponent: Working Def of Chaos: Attractor + Positive LE = Chaos
Field Data S. Ellner & P. Turchin Amer. Nat. 1995 Lyapunov Number > 1 Chaos
Field Data S. Ellner & P. Turchin Amer. Nat. 1995 Lyapunov Number > 1 Chaos
Lab Data S. Ellner & P. Turchin Amer. Nat. 1995
Trends in Eco. & Evol. 1989 Is ecological chaos an evolutionary cruel and inhuman punishment?
title • Equilibrium Principles Equilibrium Principles L L’=0 H ---Hare Population L ---Lynx PopulationT ---Trapper Population b3---Fur Collection-to-Recruitment Ratio d3---Per-Capita Retirement Rate m3---Bankruptcy Rate h2---Handling Time Per-Catch H ’=0 0 H (b1 - d1 )/ m1 Theorem:(Enrichment Equilibrium Principle) For sufficiently large b1 / h0 – d1 , the equilibrium point with the largest top-predator density and the largest predator density is always stable.
title • Equilibrium Principles L L’=0 H ’=0 H ---Hare Population L ---Lynx PopulationT ---Trapper Population b3---Fur Collection-to-Recruitment Ratio d3---Per-Capita Retirement Rate m3---Bankruptcy Rate h2---Handling Time Per-Catch 0 H Theorem:(Efficiency Equilibrium Principle) For sufficiently large b3 / h2 – d3, the equilibrium point with the largest, positive top-predator density is always stable. If there is no equilibrium points of positive top-predator density, then the equilibrium point with the largest predator density is stable for sufficiently large b2 / h1 – d2
Other Examples -- Childhood Epidemics SEIR (Susceptible, Exposed, Infectious, Recovered) Dynamics W.M. Schaffer, L.F. Olsen, G.L. Truty, S.L. Fulmer 1985, 1993
... More Childhood Epidemics W.M. Schaffer, L.F. Olsen, G.L. Truty, S.L. Fulmer 1985, 1993
Canadian Snowshoe Hare -Lynx Dynamics 1844 -- 1935 N.C. Stenseth Science 1995