440 likes | 648 Views
Classic Experiments in Quantum Optics. Experimental Quantum Optics and Quantum Information Part II, Photonic Quantum Optics Morgan W. Mitchell Spring 2005 ICFO – Institut de Ciencies Fotoniques. Taylor’s experiment (1909). film. slit. needle. diffraction pattern f(y).
E N D
Classic Experiments in Quantum Optics Experimental Quantum Optics and Quantum Information Part II, Photonic Quantum Optics Morgan W. Mitchell Spring 2005 ICFO – Institut de Ciencies Fotoniques
Taylor’s experiment (1909) film slit needle diffraction pattern f(y) Proceedings of the Cambridge philosophical society. 15 114-115 (1909)
Taylor’s experiment (1909) Interpretation: Classical: f(y) <E2(y)> Early Quantum (J. J. Thompson): if photons are localized concentrations of E-M field, at low photon density there should be too few to interfere. Modern Quantum: f(y) = <n(y)> = <a+(y)a(y)> <E-(y)E+(y)> E+(r) = a exp[i k.r – iwt] E-(r) = a+ exp[-i k.r + iwt] f(y) same as in classical. Dirac: “each photon interferes only with itself.” film slit needle diffraction pattern f(y)
Hanbury-Brown and Twiss (1956) Nature, v.117 p.27 Correlation g(2) Tube position I Detectors see same field t I Detectors see different fields Signal is: g(2) = <I1(t)I2(t)> / <I1(t)><I2(t)> t
Signal is: g(2) = <I1I2> / <I1><I2> = < (<I1>+dI1) (<I2>+ dI2) > / <I1><I2> Note: <I1> + dI1≥ 0 <I2> + dI2 ≥ 0 <dI1> = <dI2> = 0 g(2) = (<I1><I2>+<dI1><I2>+<dI2><I1>+<dI1dI2>)/<I1><I2> = 1 + <dI1dI2>)/<I1><I2> = 1 for uncorrelated <dI1dI2> = 0 > 1 for positive correlation <dI1dI2> > 0 e.g. dI1=dI2 <1 for anti-correlation <dI1dI2> < 0 Classical optics: viewing the same point, the intensities must be positively correlated. Hanbury-Brown and Twiss (1956) Correlation g(2) Tube position I Detectors see same field t I Detectors see different fields I1= I0/2 I0 t I2= I0/2
Kimble, Dagenais + Mandel 1977 PRL, v.39 p691 Correlation g(2) Classical: correlated I1= I0/2 I0 I2= I0/2 t1 - t2 Correlation g(2) Quantum: can be anti-correlated n1=0 or 1 n0=1 n2= 1- n1 t1 - t2
Kimble, Dagenais + Mandel 1977 PRL, v.39 p691
Kimble, Dagenais + Mandel 1977 PRL, v.39 p691 Interpretation: g(2)(t) < a+(t)a+(t+t)a(t+t)a(t)> < E-(t) E-(t+t) E+(t+t)E+(t)> HI(t) -Ed E+(t) |e><g| + E-(t) |g><e| HI(t) HI(t+t) E-(t) E-(t+t) |g><e| |g><e| + h.c. Pe time t
Pelton, et al. 2002 InAs QD relax fs pulse emit
Pelton, et al. 2002 Goal: make the pure state |> = a+|0> = |1> Accomplished: make the mixed state r 0.38 |1><1| + 0.62 |0><0|
Holt + Pipkin / Clauser + Freedman / Aspect, Grangier + Roger 1973-1982 J=0 J=1 J=0 Total angular momentum is zero. For counter-propagating photons implies a singlet polarization state: |> =(|L>|R> - |R>|L>)/2
Holt + Pipkin / Clauser + Freedman / Aspect, Grangier + Roger 1973-1982 Total angular momentum is zero. For counter-propagating photons, implies a singlet polarization state: |> =(|L>|R> - |R>|L>)/2 |> = 1/2(aL+aR+ - aR+aL+)|0> = 1/2(aH+aV+ - aV+aH+)|0> = 1/2(aD+aA+ - aA+aD+)|0> Detect photon 1 in any polarization basis (pA,pB), detect pA, photon 2 collapses to pB, or vice versa. If you have classical correlations, you arrive at the Bell inequality -2 ≤ S ≤ 2.
Holt + Pipkin / Clauser + Freedman / Aspect, Grangier + Roger 1973-1982 a b a' 22.5° b' |SQM| ≤ 22 = 2.828...
Perkin-Elmer Avalanche Photodiode V negative thin p region (electrode) absorption region intrinsic silicon e- h+ multiplication region V positive “Geiger mode”: operating point slightly above breakdown voltage
Avalanche Photodiode Mechanism Many valence electrons, each with a slightly different absorption frequency wi. Broadband detection.
“Classic” Photomultiplier Tube E Many valence electrons, each can be driven into the continuum wi. Broadband detection.
Photocathode Response Broad wavelength range: 120 nm – 900 nm Lower efficiency: QE < 30%
Microchannel Plate Photomultiplier Tube For light, use same photocathode materials, same Q. Eff. and same wavelength ranges. Much faster response: down to 25 ps jitter (TTS = Transit time spread)
Coincidence Detection with Parametric Downconversion Using MCPPMTs for best time-resolution. CF Disc. = Constant-fraction discriminator: identifies “true” detection pulses, rejects background, maintains timing. TDC = “Time to digital converter”:Measures delay from A detection to B detection. PDP11: Very old (1979) computer from DEC. FRIBERG S, HONG CK, MANDEL LMEASUREMENT OF TIME DELAYS IN THE PARAMETRIC PRODUCTION OF PHOTON PAIRS Phys. Rev. Lett. 54 (18): 2011-2013 1985
Physical Picture of Parametric Downconversion phase matching conduction collinear non-collinear or k-vector conservation ks + ki = kp valence Material (KDP) is transparent to both pump (UV) and downconverted photons (NIR). Process is “parametric” = no change in state of KDP. This requires energy and momentum conservation: ws + wi = wp ks + ki = kp Even so, can be large uncertainty in ws-wi Intermediate states (virtual states) don’t even approximately conserve energy. Thus must be very short-lived. Result: signal and idler produced at same time.
Coincidence Detection with Parametric Downconversion TDC = time-to-digital converter. Measures delay from A detection to B detection. transit time through KDP ~400 ps Dt < 100 ps FRIBERG S, HONG CK, MANDEL LMEASUREMENT OF TIME DELAYS IN THE PARAMETRIC PRODUCTION OF PHOTON PAIRS Phys. Rev. Lett. 54 (18): 2011-2013 1985
Quadrature Detection of Squeezed Light (Slusher, et. al. 1985) SLUSHER RE, HOLLBERG LW, YURKE B, et al. OBSERVATION OF SQUEEZED STATES GENERATED BY 4-WAVE MIXING IN AN OPTICAL CAVITY Phys. Rev. Lett. 55 (22): 2409-2412 1985
Quadrature Detection Electronics environmental noise P measurement frequency n Pn freq Spectrum analyzer time Wu, et. al. 1987 Slusher, et. al. 1985
Quadrature Detection of Squeezed Vacuum Pn input is squeezed vacuum input is vacuum 63% VRMS (40% power) LO phase X2 X2 q q X1 X1 squeezed vacuum vacuum
Cauchy Schwarz Inequality Violation 202Hg 9P 567.6 nm 7S e- impact 435.8 nm 7P
Two-photon diffraction Two IR photons (pairs) One IR photon Pump D’Angelo, Chekhova and Shih, Phys. Rev. Lett. 87 013602 (2001)
Two-photon diffraction Two IR photons (pairs) Two paths to coincidence detection: One IR photon Pump D’Angelo, Chekhova and Shih, Phys. Rev. Lett. 87 013602 (2001)
Not just for photons! g(1) g(2)
Hong-Ou-Mandel effect Hong, Ou and Mandel, Phys. Rev. Lett. 59 2044 (1987)
Hong-Ou-Mandel effect Hong, Ou and Mandel, Phys. Rev. Lett. 59 2044 (1987)
Hong-Ou-Mandel effect with polarization Sergienko, Shih, and Rubin, JOSA B, 12, 859 (1995)
Single-pass squeezing Wenger,Tualle-Brouri, and Grangier, Opt. Lett. 29, 1267 (2004)
Single-pass squeezing Wenger,Tualle-Brouri, and Grangier, Opt. Lett. 29, 1267 (2004)