590 likes | 732 Views
DCM: Advanced topics. Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute for Empirical Research in Economics University of Zurich Wellcome Trust Centre for Neuroimaging Institute of Neurology University College London.
E N D
DCM: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute for Empirical Research in Economics University of Zurich Wellcome Trust Centre for Neuroimaging Institute of Neurology University College London Methods & models for fMRI data analysis in Neuroeconomics, University of Zurich, 16 December 2009
Overview • Bayesian model selection (BMS) • Nonlinear DCM for fMRI • Integrating tractography and DCM • DCMs for electrophysiological data
Pitt & Miyung (2002) TICS Model comparison and selection Given competing hypotheses on structure & functional mechanisms of a system, which model is the best? Which model represents thebest balance between model fit and model complexity? For which model m does p(y|m) become maximal?
Bayesian model selection (BMS) Model evidence: Gharamani, 2004 p(y|m) y all possible datasets accounts for both accuracy and complexity of the model Model comparison via Bayes factor: allows for inference about structure (generalisability) of the model • Various approximations, e.g.: • negative free energy, AIC, BIC Penny et al. 2004, NeuroImage Stephan et al. 2007, NeuroImage
Approximations to the model evidence in DCM Maximizing log model evidence = Maximizing model evidence Logarithm is a monotonic function Log model evidence = balance between fit and complexity No. of parameters In SPM2 & SPM5, interface offers 2 approximations: No. of data points Akaike Information Criterion: Bayesian Information Criterion: AIC favours more complex models, BIC favours simpler models. Penny et al. 2004, NeuroImage
Bayes factors To compare two models, we can just compare their log evidences. But: the log evidence is just some number – not very intuitive! A more intuitive interpretation of model comparisons is made possible by Bayes factors: positive value, [0;[ Kass & Raftery classification: Kass & Raftery 1995, J. Am. Stat. Assoc.
The negative free energy approximation • Under Gaussian assumptions about the posterior (Laplace approximation), the negative free energy F is a lower bound on the log model evidence:
The complexity term in F • In contrast to AIC & BIC, the complexity term of the negative free energy F accounts for parameter interdependencies. • The complexity term of F is higher • the more independent the prior parameters ( effective DFs) • the more dependent the posterior parameters • the more the posterior mean deviates from the prior mean • NB: SPM8 only uses F for model selection !
M3 attention M2 better than M1 PPC BF 2966 F = 7.995 stim V1 V5 M4 attention PPC stim V1 V5 BMS in SPM8: an example attention M1 M2 PPC PPC attention stim V1 V5 stim V1 V5 M3 M1 M4 M2 M3 better than M2 BF 12 F = 2.450 M4 better than M3 BF 23 F = 3.144
Fixed effects BMS at group level Group Bayes factor (GBF) for 1...K subjects: Average Bayes factor (ABF): Problems: • blind with regard to group heterogeneity • sensitive to outliers
Random effects BMS for group studies Dirichlet parameters = “occurrences” of models in the population Dirichlet distribution of model probabilities Multinomial distribution of model labels Model inversion by Variational Bayes (VB) Measured data y Stephan et al. 2009, NeuroImage
• • • Task-driven lateralisation Does the word contain the letter A or not? letter decisions > spatial decisions group analysis (random effects),n=16, p<0.05 corrected analysis with SPM2 time Is the red letter left or right from the midline of the word? spatial decisions > letter decisions Stephan et al. 2003, Science
Theories on inter-hemispheric integration during lateralised tasks Hemispheric recruitment Inhibition/Competition Information transfer(for left-lateralised task) T T |RVF T + − + + − T |LVF T T LVF RVF Predictions: modulation by task conditional on visual field asymmetric connection strengths Predictions: modulation by task only positive & symmetricconnection strengths Predictions: modulation by task only negative & symmetricconnection strengths
intra VF LD Bind Bcond VF LD LG left LG left LG left FG right FG right FG right LG right LG right LG right FG left FG left FG left inter 16 models Bind Bcond A C VF RVF LVF LD LD LD Bind LD,RVF LD,LVF Bcond LD|RVF LD|LVF RVF stim. LVF stim. B D VF LD Bind Bcond LD LVF LD LVF LD|LVF RVF RVF LD|RVF
LG left FG right LG right FG left Ventral stream & letter decisions LD|LVF Right fusiform gyrus(FG) 38,-52,-20 Left fusiform gyrus(FG) -44,-52,-18 0.25 0.04 0.12 0.02 LD LD LD>SD, p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) p<0.01 uncorrected 0.36 0.06 0.16 0.05 Left lingual gyrus(LG) -12,-64,-4 Right lingual gyrus(LG) 14,-68,-2 0.02 0.02 0.03 0.03 LD|RVF RVF stim. LVF stim. mean parameter estimates SE (n=12) significant modulation (p<0.05, Bonferroni-corrected) LD>SD masked incl. with RVF>LVF p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) LD>SD masked incl. with LVF>RVF p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) significant modulation (p<0.05, uncorrected) non-significant modulation Stephan et al. 2007, J. Neurosci.
Asymmetric modulation of LG callosal connections is consistent across subjects Stephan et al. 2007, J. Neurosci.
LG left MOG right MOG left FG right LG right FG left Ventral stream & letter decisions Right FG 38,-52,-20 Left MOG -38,-90,-4 Left FG -44,-52,-18 Right MOG -38,-94,0 LD|LVF 0.20 0.04 0.07 0.02 LD>SD, p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) p<0.01 uncorrected 0.27 0.06 0.11 0.03 LD LD Left LG -12,-70,-6 Left LG -14,-68,-2 RVF stim. LVF stim. LD>SD masked incl. with RVF>LVF p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) LD>SD masked incl. with LVF>RVF p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) Stephan et al. 2007, J. Neurosci.
LD LD|LVF LD|RVF LD|LVF LD LD RVF stim. LD LVF stim. RVF stim. LD|RVF LVF stim. MOG MOG MOG MOG LG LG LG LG FG FG FG FG m2 m1 m2 m1 Stephan et al. 2009, NeuroImage
m2 m1
LD|LVF LD LD LD LD|RVF LD|LVF RVF stim. LD|RVF LVF stim. RVF stim. LD LVF stim. LG LG FG LG FG FG LG FG m2 m1 m2 m1
m2 m1
LD LD|LVF LD|RVF LD|LVF LD LD RVF stim. LD LVF stim. RVF stim. LD|RVF LVF stim. MOG MOG MOG MOG LG LG LG LG FG FG FG FG Simulation study: sampling subjects from a heterogenous population m1 • Population where 70% of all subjects' data are generated by model m1 and 30% by model m2 • Random sampling of subjects from this population and generating synthetic data with observation noise • Fitting both m1 and m2 to all data sets and performing BMS m2 Stephan et al. 2009, NeuroImage
true values: 1=220.7=15.4 2=220.3=6.6 mean estimates: 1=15.4, 2=6.6 true values: r1 = 0.7, r2=0.3 mean estimates: r1 = 0.7, r2=0.3 <r> m2 m2 m1 m1 true values: 1 = 1, 2=0 mean estimates: 1 = 0.89, 2=0.11 m2 log GBF12 m1
Model space partitioning: Nonlinear hemodynamic models vs. linear ones m2 m1 m2 m1 Stephan et al. 2009, NeuroImage
Overview • Bayesian model selection (BMS) • Nonlinear DCM for fMRI • Integrating tractography and DCM • DCMs for electrophysiological data
Neural state equation intrinsic connectivity modulation of connectivity direct inputs modulatory input u2(t) driving input u1(t) t t y BOLD y y y λ hemodynamic model activity x2(t) activity x3(t) activity x1(t) x neuronal states integration Stephan & Friston (2007),Handbook of Brain Connectivity
non-linear DCM modulation driving input bilinear DCM driving input modulation Two-dimensional Taylor series (around x0=0, u0=0): Nonlinear state equation: Bilinear state equation:
Neural population activity x3 fMRI signal change (%) x1 x2 u2 u1 Nonlinear dynamic causal model (DCM): Stephan et al. 2008, NeuroImage
SPC V1 IFG Attention V5 Photic .52 (98%) .37 (90%) .42 (100%) .56 (99%) .69 (100%) .47 (100%) .82 (100%) Motion .65 (100%) Nonlinear DCM: Attention to motion Stimuli + Task Previous bilinear DCM Büchel & Friston (1997) 250 radially moving dots (4.7 °/s) Friston et al. (2003) Conditions: F – fixation only A – motion + attention (“detect changes”) N – motion without attention S – stationary dots Friston et al. (2003):attention modulates backward connections IFG→SPC and SPC→V5. Q: Is a nonlinear mechanism (gain control) a better explanation of the data?
M3 attention M2 better than M1 PPC BF= 2966 stim V1 V5 M4 BF= 12 attention PPC M3 better than M2 stim V1 V5 BF= 23 M4 better than M3 attention M1 M2 modulation of back- ward or forward connection? PPC PPC attention stim V1 V5 stim V1 V5 additional driving effect of attention on PPC? bilinear or nonlinear modulation of forward connection? Stephan et al. 2008, NeuroImage
attention MAP = 1.25 0.10 PPC 0.26 0.39 1.25 0.26 V1 stim 0.13 V5 0.46 0.50 motion Stephan et al. 2008, NeuroImage
motion & attention static dots motion & no attention V1 V5 PPC observed fitted
rivalry non-rivalry 0.02 -0.03 MFG 1.05 0.08 2.43 2.41 -0.31 0.51 0.30 PPA FFA -0.80 0.04 -0.03 0.02 0.06 faces houses faces houses Nonlinear DCM: Binocular rivalry Stephan et al. 2008, NeuroImage
FFA PPA MFG BR nBR time (s)
Overview • Bayesian model selection (BMS) • Nonlinear DCM for fMRI • Integrating tractography and DCM • DCMs for electrophysiological data
Diffusion-weighted imaging Parker & Alexander, 2005, Phil. Trans. B
Probabilistic tractography: Kaden et al. 2007, NeuroImage • computes local fibre orientation density by spherical deconvolution of the diffusion-weighted signal • estimates the spatial probability distribution of connectivity from given seed regions • anatomical connectivity = proportion of fibre pathways originating in a specific source region that intersect a target region • If the area or volume of the source region approaches a point, this measure reduces to method by Behrens et al. (2003)
Integration of tractography and DCM R1 R2 low probability of anatomical connection small prior variance of effective connectivity parameter R1 R2 high probability of anatomical connection large prior variance of effective connectivity parameter Stephan, Tittgemeyer et al. 2009, NeuroImage
probabilistic tractography FG right LG right anatomical connectivity connection-specific priors for coupling parameters LG left LG (x1) FG (x4) LG (x2) FG (x3) FG left LD|LVF LD LD DCM structure LD|RVF BVF stim. RVF stim. LVF stim.
Connection-specific prior variance as a function of anatomical connection probability • 64 different mappings by systematic search across hyper-parameters and • yields anatomically informed (intuitive and counterintuitive) and uninformed priors
Further reading: Methods papers on DCM for fMRI – part 1 • Chumbley JR, Friston KJ, Fearn T, Kiebel SJ (2007) A Metropolis-Hastings algorithm for dynamic causal models. Neuroimage 38:478-487. • Daunizeau J, David, O, Stephan KE (2010) Dynamic Causal Modelling: A critical review of the biophysical and statistical foundations. NeuroImage, in press. • Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273-1302. • Kasess CH, Stephan KE, Weissenbacher A, Pezawas L, Moser E, Windischberger C (2010) Multi-Subject Analyses with Dynamic Causal Modeling. NeuroImage, in press. • Kiebel SJ, Kloppel S, Weiskopf N, Friston KJ (2007) Dynamic causal modeling: a generative model of slice timing in fMRI. Neuroimage 34:1487-1496. • Marreiros AC, Kiebel SJ, Friston KJ (2008) Dynamic causal modelling for fMRI: a two-state model. Neuroimage 39:269-278. • Penny WD, Stephan KE, Mechelli A, Friston KJ (2004a) Comparing dynamic causal models. Neuroimage 22:1157-1172. • Penny WD, Stephan KE, Mechelli A, Friston KJ (2004b) Modelling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage 23 Suppl 1:S264-274.
Further reading: Methods papers on DCM for fMRI – part 2 • Stephan KE, Harrison LM, Penny WD, Friston KJ (2004) Biophysical models of fMRI responses. Curr Opin Neurobiol 14:629-635. • Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007) Comparing hemodynamic models with DCM. Neuroimage 38:387-401. • Stephan KE, Harrison LM, Kiebel SJ, David O, Penny WD, Friston KJ (2007) Dynamic causal models of neural system dynamics: current state and future extensions. J Biosci 32:129-144. • Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007) Comparing hemodynamic models with DCM. Neuroimage 38:387-401. • Stephan KE, Kasper L, Harrison LM, Daunizeau J, den Ouden HE, Breakspear M, Friston KJ (2008) Nonlinear dynamic causal models for fMRI. Neuroimage 42:649-662. • Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model selection for group studies. Neuroimage 46:1004-1017. • Stephan KE, Tittgemeyer M, Knösche TR, Moran RJ, Friston KJ (2009) Tractography-based priors for dynamic causal models. Neuroimage 47: 1628-1638. • Stephan KE, Penny WD, Moran RJ, den Ouden HEM, Daunizeau J, Friston KJ (2010) Ten simple rules for Dynamic Causal Modelling. NeuroImage, in press.
Overview • Bayesian model selection (BMS) • Nonlinear DCM for fMRI • Integrating tractography and DCM • DCMs for electrophysiological data
DCM: generative model for fMRI and ERPs Hemodynamicforward model:neural activityBOLD (nonlinear) Electric/magnetic forward model:neural activityEEGMEG LFP (linear) Neural state equation: fMRI ERPs Neural model: 1 state variable per region bilinear state equation no propagation delays Neural model: 8 state variables per region nonlinear state equation propagation delays inputs
DCM for EEG, MEG & LFPs macroscopic scale mesoscopic scale microscopic scale system of ensembles ensemble (105~106 neurons) neuron mean-field response (due to ensemble dispersion) excitatory interneurons pyramidal cells effective connectivity (due to synaptic density) inhibitory interneurons David et al. 2006, NeuroImage Daunizeau et al. 2009, NeuroImage Kiebel et al. 2006, NeuroImage Marreiros et al. 2008, NeuroImage Moran et al. 2009, NeuroImage
DCMs for M/EEG and LFPs • can be fitted both to frequency spectra and ERPs • models different neuronal cell types, different synaptic types (and their plasticity) and spike-frequency adaptation (SFA) • ongoing model validation by LFP recordings in rats, combined with pharmacological manipulations standards deviants A1 A2 Example of single-neuron SFA Tombaugh et al. 2005, J.Neurosci.
Neural mass model of a cortical macrocolumn E x t r i n s i c i n p u t s Excitatory Interneurons He, e mean firing rate mean postsynaptic potential (PSP) 1 2 Pyramidal Cells He, e MEG/EEG signal 3 4 mean PSP mean firing rate Inhibitory Interneurons Hi, e Excitatory connection Inhibitory connection • te, ti : synaptic time constant (excitatory and inhibitory) • He, Hi: synaptic efficacy (excitatory and inhibitory) • g1,…,g4: intrinsic connection strengths • propagation delays Parameters: Jansen & Rit (1995) Biol. Cybern. David et al. (2003) NeuroImage