1 / 16

§7. 用合同变换法化 二次型为标准形

§7. 用合同变换法化 二次型为标准形. 定义 10 . 若对方阵 A 作一次初等 行 变换,接着对所得矩阵作一次同种的初等 列 变换,就称对 A 进行一次 合同变换 . 用合同变换法化二次型为标准形的实质是: 利用可逆线性变换 x = Cy ,把 f = x T Ax 化为标准形,即 f= x T Ax = ( Cy ) T ACy = y T C T ACy = y T Λ y 只须 C T AC = Λ. 又因 C = P 1 P 2 … P s , 其中 P 1 , P 2 , … , P s 均为初等方阵 . 所以

les
Download Presentation

§7. 用合同变换法化 二次型为标准形

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. §7.用合同变换法化 二次型为标准形 定义10. 若对方阵 A 作一次初等行变换,接着对所得矩阵作一次同种的初等列变换,就称对A进行一次合同变换. 用合同变换法化二次型为标准形的实质是: 利用可逆线性变换 x=Cy,把f =x TAx化为标准形,即 f=x TAx=(Cy) TACy=y TCT ACy=y T Λy 只须 CT AC= Λ.

  2. 又因 C= P1P2…Ps ,其中P1,P2,…,Ps均为初等方阵.所以 ( P1P2… Ps)TAP1P2…Ps = Λ 即 PsT…P2T P1TA P1P 2… P s = Λ (1) 而 PST…P2T P1T= PST …P2T P1TE=CT (2) 结合(1)和(2) , 得出将 A化成对角形矩阵,同时求出可逆矩阵C:

  3. A合同变换 (A | E)(Λ| CT) E作行变换 求出CT, 作可逆线性变换x=Cy, 则该变换将f 化为标准形. f = k1y12+k2y22+…+kryr2。

  4. 用正交变换化 f为标准形; • 用配方法化 f为标准形; • 用合同法化 f 为标准形.

  5. f = 4y12 + 3y22 + 24y32。 作业:163页 12(1) (要求用三种方法化f 为标准形)

More Related