1 / 12

Toets 2

Toets 2. Opgave 1 a. Opgave 1 b. B1=firwd(7,1,pi*1/7,0,1). B2=firwd(7,1,pi*1/7,0,5). Used unwrap for continuous phase. Opgave 1 c d. d) A notch filter located at 0.14 (and its multiples). Opgave 2a. Convolutie in tijdsdomein is product in z-domein:. Opgave 2b. b1=[1 -4 3] a1=[1 2 4]

lesa
Download Presentation

Toets 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Toets 2

  2. Opgave 1 a

  3. Opgave 1 b B1=firwd(7,1,pi*1/7,0,1) B2=firwd(7,1,pi*1/7,0,5) Used unwrap for continuous phase

  4. Opgave 1 c d d) A notch filter located at 0.14 (and its multiples)

  5. Opgave 2a Convolutie in tijdsdomein is product in z-domein:

  6. Opgave 2b b1=[1 -4 3] a1=[1 2 4] [r1,p1,k1]=residue(b1,a1) r1 = -3.0000 - 1.4434i -3.0000 + 1.4434i p1 = -1.0000 + 1.7321i -1.0000 - 1.7321i k1 = 1 Table 5.1- nr 15:

  7. Opgave 2c Impulsrespons: Step respons: b2a=[1 -1] a2a=[1 4 1 0] [r2a,p2a,k2a]=residue(b2a,a2a) b2b=[1] a2b=[1 4 1 ] [r2b,p2b,k2b]=residue(b2b,a2b) r2a = -0.3660 1.3660 -1.0000 p2a = -3.7321 -0.2679 0 k2a = [] r2b = -0.2887 0.2887 p2b = -3.7321 -0.2679 k2b = []

  8. Opgave 3 wa=1.200*pi/sqrt(2) num=[1 2*wa 2*wa^2] den=[1 4*wa 2*wa^2] figure(1) freqs(num,den) fs=2.000 [numd,dend]=bilinear(num,den,fs/2) figure(2) freqz(numd,dend) num = 1.0000 5.3315 14.2122 den = 1.0000 10.6629 14.2122 fs = 2 numd = 0.7303 0.5166 0.1909 dend = 1.0000 0.5166 -0.0787

  9. Opgave 3 alternatief fs=2000; fc=600; wc=2*pi*fc; awc=2*fs*tan(wc/fs/2) [b,a]=bilinear([1/awc^2 2/awc 2],[1/awc^2 4/awc 2],fs) figure(1) freqz(b,a,512,fs) sys = tf([1/wc^2 2/wc 2],[1/wc^2 4/wc 2]); figure(2) bode(sys)

  10. Opgave 4 a) b) Maak twee filters: een laagdoorlaat 2e orde (6dB/oct) bij fc een hoogdoorlaat 2e orde ook bij fc Pole moet in de buurt liggen van 0.7, dan geen resonantie.

  11. Opgave 4c

More Related