140 likes | 151 Views
Jets and Multiphase Turbulence. Martin Krause MPI für extraterrestrische Physik Universitätssternwarte München Crete - 20th May 2008. Overview. Comparison: NLR & ENLR 3D Multiphase turbulence simulations. Emission Line Regions in Extragalactic Jet Flows. High redshift radio galaxies:.
E N D
Jets and Multiphase Turbulence • Martin Krause • MPI für extraterrestrische Physik • Universitätssternwarte München • Crete - 20th May 2008
Overview • Comparison: NLR & ENLR • 3D Multiphase turbulence simulations
Emission Line Regions in Extragalactic Jet Flows High redshift radio galaxies: Redshift 1 radio galaxies blue + radio con’s red + radio con’s Linear scale, 50 kpc Scaling to Seyferts by MBH?: critical scale -> ≈ 1kpc
NLR of Seyfert Galaxy NGC 1068 Capetti et al. 1997, Hα+[NII] 1” = 72 pc Wilson & Ulvestad 1983, 4.9GHz + 15GHz insets • Radio & emission line features corellated • Bright NLR part: jet bent / cloud hit • Filamentary NLR & radio structure
NLR of Seyfert Galaxy M51 1” = 41 pc Bradley, Kaiser & Baan 2004 Hα+[NII], 8.4 GHz contours [OIII] • Radio & emission line features corellated • Filamentary NLR & radio structure • NLR may be a turbulent mixing region
Multiphase turbulence in radio cocoons → Simulations • Setup • Start with Kelvin-Helmholtz instability plus dense clouds • Compressible 3D hydrodynamics + cooling (DS+molecules @ low T), codes: Nirvana, (Flash) • Density ratios: 10-4, Mach: 0.8 (80 in warm medium) • Here: vary warm gas Temperature and cloud density, ctrl: no clouds, & resolution
Multiphase turbulence in radio cocoons → 3D Results Emissivity Vertical Integral Horizontal Integral
Multiphase turbulence in radio cocoons → 3D Results Slices of log. density • Cool gas tends to form small cloudlets • clouds shielded by intermediate material • 2D: filaments
Data Analysis: Temperature Distribution 14,000 K • Realisation of shock ionisation scenario: equilibrium temperature: 14,000 K independent of simulation details • Mixing different in 2D and 3D (also resolution • Signal above mixing level evident in both cases • Evidence for cooler gas (1000 K, molecular?) 2D 3D 14,000 K
Data Analysis: EL-density - Ekin Etot correlates with cloud density => increased pressure compresses clouds ENLR: n & Etot too small NLR: n too small /kpc3
Data Analysis: EL-pow - vel. ENLR M51 • dominated by time evolution • no obvious correlation • but some dependence on amb. temperature, more dv => tot. Ener. matters
Data Analysis: EL-pow - Ekin EL-pow cor./w. Ekin & Tbg Best one with kinetic energy => We simulate a realisation of the shock ionisation scenario startup mess /kpc3
Summary • NLR scaled down parameters from ENLR • Simulated turbulent multiphase jet - environment interaction • Realisation of shock ionisation scenario • MPT outputs 1 erg/s ELP per 1012 erg kin energy • Agreement in M51: new support for shock ionisation scenario • 14,000 K equilibrium T, also 105 K gas • Electron density too low, perhaps ok for ENLR, not for NLR somethings missing, maybe more mass or radiative transfer ?