280 likes | 294 Views
Introduction to Advanced Topics Chapter 1. Mooly Sagiv Schrierber 317 03-640-7606 www.math.tau.ac.il/~sagiv/courses/acd.html. Outline. Course requirements Review of compiler structure Advanced issues in elementary topics The importance of optimizations Structure of optimizing compilers
E N D
Introduction to Advanced TopicsChapter 1 Mooly Sagiv Schrierber 317 03-640-7606 www.math.tau.ac.il/~sagiv/courses/acd.html
Outline • Course requirements • Review of compiler structure • Advanced issues inelementary topics • The importance of optimizations • Structure of optimizing compilers • Placement of optimizations • Advanced topics
Course Requirements • Prepare course notes10% • Theoretical assignments 30% • Final home exam 60%
Compiler Structure String of characters Scanner tokens Parser Symbol table and access routines OS Interface AST Semantic analyzer IR Code Generator Object code
Advanced Issues inElementary Topics • Symbol table management(3) • Efficiency • Overloading • Type Inference • Intermediate Language Selection(4) • Run-Time Support(5) • Producing Code Generators (6)
procedure BACH is procedure put (x: boolean) is begin null; end; procedure put (x: float) is begin null; end; procedure put (x: integer) is begin null; end; package x is type boolean is (false, true); function f return boolean; -- (D1) end x; package body x is function f return boolean is begin null; end; end x; function f return float is begin null; end; -- (D2) use x; begin put (f); -- (A1) A: declare f: integer; -- (D3) begin put (f); -- (A2) B: declare function f return integer is begin null; end; -- (D4) begin put (f); -- (A3) end B; end A; end BACH;
Advanced Issues inElementary Topics • Symbol table management(3) • Efficiency • Overloading • Type Inference • Intermediate Language Selection(4) • Run-Time Support(5) • Producing Code Generators (6)
Advanced Issues inElementary Topics • Symbol table management(3) • Efficiency • Overloading • Type Inference • Intermediate Language Selection(4) • Run-Time Support(5) • Producing Code Generators (6)
Intermediate Language Selection • Low Vs. High level control flow structures • Flat Vs. Hierarchical (tree) • Machine Vs. High level of instructions • (Symbolic) Registers Vs. Stack • Normal forms (SSA) • Intermediate forms: Control Flow Graph, Call Graph, Program Dependence Graph • Issues: Engineering, efficiency, portability, optimization level
LIR s2 s1 s4 s3 s6 s5 L1: if s2 >s6 goto L2 s7 addr a s8 4*s9 s10 s7+s8 [s10] 2 s2 s2 + s4 goto L1 L2: MIR v v1 t2 v2 t3 v3 L1: if v >t3 goto L2 t4 addr a t5 4*i t6 t4+t5 *t6 2 v v + t2 goto L1 L2: IRs in the Book HIR for v v1 by v2 to v3 do a[i] :=2 endfor
s21 s1 s4 s3 s4 s3 B1 B3 s7 addr a s8 4*s9 s10 s7+s8 [s10] 2 s23 s22 + s4 s22(s21 , s23) s22>=s6 N B2 Y Single Static Assignment Form (SSA) s2 s1 s4 s3 s6 s5 L1: if s2 >s6 goto L2 s7 addr a s8 4*s9 s10 s7+s8 [s10] 2 s2 s2 + s4 L2:
Advanced Issues inElementary Topics • Symbol table management(3) • Efficiency • Overloading • Type Inference • Intermediate Language Selection(4) • Run-Time Support(5) • Producing Code Generators (6)
Run-Time Support • Data representation and instructions • Register usage • Stack frames (activation records) • Parameter passing disciplines • Symbolic and polymorphic language support • Garbage Collection
Advanced Issues inElementary Topics • Symbol table management(3) • Efficiency • Overloading • Type Inference • Intermediate Language Selection(4) • Run-Time Support(5) • Producing Code Generators (6)
The Importance of Optimizations • One pass compilers produce slow code • Much of the time spent in loops • optimize loops • Machines can be simpler and faster if optimizing compilers are used (RISC, VLIW) • Programs are complex and general • Compilers need to be modular
SPARC code ldw a, r1 ldw b, r2 add r1, r2, r3 stw r3, c ldw c, r3 add r3, 1, r4 stw r4, d Optimized SPARC code add r1, r2, r3 add r3, 1, r4 C code int a, b, c, d; c = a + b; d = c + 1; 2 cycles 10 cycles
Application Dependent Optimizations • Functional programs • replacement of recursion by loops (tail-calls elimination) • replacement of heap by stack • Object Oriented Programs • Dead member elimination • Replacement of virtual by static function • Numeric Code • Database Code
String String Scanner Scanner Tokens Tokens Parser Parser AST AST Semantic Semantic AST AST IR generator LIR generator MIR LIR Optimizer Optimizer MIR LIR Code generator Fin. assembly LIR Object Post. optimizer Object
Mixed vs. Low Level Optimizers • Mixed • Sun-SPARC, Dec. Alpha, SGI-MIPS, Intel’s 386 • Easier to port • More efficient compilation? • Supports CISC • Low Level • HP-PA-RISC/IBM-Power PC • More efficient code • Conceptually simpler (in RISC) • Used for multiple programming languages
Translation by Preprocessing • Some programming languages are translated into C • Elimination of includes, C++(cfront), Haskel • Quick and portable solution • C supports some indirect source level debugging • Other examples: Fortran into “vector” Fortran program
Data-Cache Optimizations(20) String Scanner Tokens Parser AST Semantic HIR Data-cache optimizer MIR Object
String Scanner Tokens Parser AST Semantic AST LIR generator Low-to-High HIR=YIL LIR=XIL Data-cache optimizer Optimizer LIR HIR=YIL High-to-Low Fin. assembly Object IBM PowerPC compiler
Outline • Review of compiler structure • Advanced issues inelementary topics • The importance of optimizations • Structure of optimizing compilers • Placement of optimizations • Advanced Topics
Scalar replacement of array references Data-cache optimizations Procedure integration Tail-call elimination Scalar replacement of aggregates Sparse constant propagation Interprocedural constant propagation Procedure specialization and cloning Sparse conditional constant propagation Inline expansion Leaf-routine optimizations Instruction Scheduling 1 Register allocation Instruction Scheduling 2 Intraprocedural I-cache optimizations Instruction prefetching Data prefertching Branch predication Global value numbering Local and global copy propagation Sparse conditional constant propagation Dead code elimination Common Subexpression Elimination Loop invariant code motion Partial redundency Elimination Interprocedural register allocation Interprocedural I-cache optimization
Scalar replacement after constant propagation c B.x a 1 a= 1 N Y B.x 1.0 B.y 1.0 c read B.x read B.y B.x = 1.0 c Y N
Scalar replacement before constant propagation d B.x B.x 1.0 c 2 read B.y B.x = 1.0 d d N Y B.x B.x + c d d
Theoretically Open Questions • Picking the “right” order • Combining optimizations • Proving correctness
Advanced Topics • Code Profiling • Parallelization and vectorization • Just in time compilation • Optimize for Power • Trusted compilers