1 / 9

用向量法求 二面角

用向量法求 二面角. 例 1 : 在三棱柱 ABO —A 1 B 1 O 1 中 , 平面 OBB 1 O 1 ⊥ 平面 OAB,∠ O 1 OB=60 0 , ∠B OA=90 0 ,OB=OO 1 =2, AO= . 求. z. O 1. B 1. (1) 二面角 O —AB—O 1 的大小. A 1. O. B. A. y. x. 例 2 : 已知四棱锥 P —ABCD,PB ⊥AD, 侧面 PAD 为边长等于 2 的正三角形 , 底面 ABCD 为菱形 , 侧面 PAD 与底面 ABCD 所成的二面角为 120 0 .

levi
Download Presentation

用向量法求 二面角

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 用向量法求 二面角

  2. 例1:在三棱柱ABO—A1B1O1中,平面OBB1O1⊥平面OAB,∠O1OB=600,例1:在三棱柱ABO—A1B1O1中,平面OBB1O1⊥平面OAB,∠O1OB=600, ∠BOA=900,OB=OO1=2,AO= . 求 z O1 B1 (1)二面角O—AB—O1的大小 A1 O B A y x

  3. 例2:已知四棱锥P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为1200.例2:已知四棱锥P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为1200. (1)求P到底面的距离 z P F G 1.5 C D (2) 面PAB与面CPB所成二面角的大小 O H x B A y

  4. 例3:如图:以点O(0,0,0),A(4,0,0),B(3,2,0) P(1,4,1)为顶点的空间几何体中,R,S是PA 的三等分点,M,N分别是PB,OB的中点,求 (1)直线NR和MS的夹角 (2)二面角P-OA-B的大小 《名师》P79 考点3 D C

  5. 练习1:若正四棱锥P—ABCD的侧面是正三角形。求练习1:若正四棱锥P—ABCD的侧面是正三角形。求 (1)侧面PAB与底面ABCD所成的二面角 (2)侧面PAB与侧面PBC所成的二面角 (3)侧面PAB与侧面PCD所成的二面角

  6. 练习2:在底面为直角梯形的四棱锥S—ABCD中, ∠ABC=900,SA⊥平面ABCD, SA=AB=BC=2,AD=1.求平面SCD与平面SAB所成二面角. z S y C B A D x

  7. 作业: 1.(2001年高考题)如图,以正四棱锥V—ABCD的底面中心O为坐标原点建立空间直角坐标系O—xyz,其中ox//BC,oy//ab.E 为VC的中点.底面边长为2a,高为h z V E (2)若∠BED是二面角B—VC—D的平面角,求∠BED C D O y A B x

  8. 2.(2004年浙江高考题)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直, AB= ,AF=1,M为EF的中点. (1)求证:AM//平面BDE. E (2)求二面角A—DF—B的大小 M F B C D A

More Related