1 / 6

Upravljanje mobilnim robotima

Upravljanje mobilnim robotima. Vježba 1. Local Incremental Planning for Nonholonomic Mobile Robots (De Luca & Oriolo). =u 2 = Feed forward control. %referentna trajektorija (u obliku Gaussiana, zaobilazenje prepreke) Xref = Vx*t; Yref = Ymax*exp(-sigg*(Xref-Xxc)*(Xref-Xxc)); % Gaussian

Download Presentation

Upravljanje mobilnim robotima

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Upravljanje mobilnim robotima Vježba 1

  2. Local Incremental Planning for Nonholonomic Mobile Robots (De Luca & Oriolo) =u2=Feedforward control

  3. %referentna trajektorija (u obliku Gaussiana, zaobilazenje prepreke) Xref = Vx*t; Yref = Ymax*exp(-sigg*(Xref-Xxc)*(Xref-Xxc)); % Gaussian dXref = Vx; % prva derivacija od Xref ddXref = 0; % prva derivacija od Xref dYref = -2*sigg*Vx*(Xref-Xxc)*Yref; % prva derivacija od Yref ddYref = -2*sigg*Vx*dXref*Yref-2*sigg*Vx*(Xref-Xxc)*dYref; % druga derivacija od Yref Vd2 = dXref*dXref + dYref*dYref; % u1_ref^2 dTheta = (ddYref*dXref - ddXref*dYref)/Vd2; % prva derivacija od Theta_ref u1 = k_T*(dXref*cos(y(3))+dYref*sin(y(3))); % Local Incremental Planning for Nonholonomic Mobile Robots u2 = dTheta; %----Kinematika mobilnog robota---------------% dy(1) = u1*cos(y(3)); dy(2) = u1*sin(y(3)); dy(3) = u2; %---------------------------------------------% clear; T=10.0; %vrijeme simulacije DT=0.01; %korak integracije global Vx Ymax sigg Xxc k_T k_R Vx=1; Ymax=1; sigg=2.0; Xxc=Vx*T/2; k_T = 1; k_R = 40; x10 = 0.0; %initial conditions x20 = 0.0; %initial conditions x30 = 0.0; %initial conditions tT = 0:DT:T; options = odeset('RelTol',1e-8,'AbsTol',1e-8); [t,y] = ode45('MobRobot',tT,[x10 x20 x30],options);

  4. u2=Feedback control u1 = k_T*(dXref*cos(y(3))+dYref*sin(y(3))); u2 = k_R*(atan2(dYref, dXref)-y(3));

More Related