1 / 36

Topics 1 Global Perspective 2 China Situation 3 United States 4 California 5 Conclusions

Intensity of Energy Use. Topics 1 Global Perspective 2 China Situation 3 United States 4 California 5 Conclusions. Mark D. Levine MDLevine@lbl.gov For Energy & Climate Mini-Workshop Monday, 3 November 2008. Intensity of Energy Use. Definition Reducing intensity of energy use includes:

leyna
Download Presentation

Topics 1 Global Perspective 2 China Situation 3 United States 4 California 5 Conclusions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Intensity of Energy Use • Topics • 1 Global Perspective • 2 China Situation • 3 United States • 4 California • 5 Conclusions Mark D. Levine MDLevine@lbl.gov For Energy & Climate Mini-Workshop Monday, 3 November 2008

  2. Intensity of Energy Use • Definition • Reducing intensity of energy use includes: • energy efficiency • structural change in economy • (producing and consuming • less energy-intensive products) • energy conservation

  3. 1 Global Perspective

  4. Annual Global CO2 Emissions全球二氧化碳年排放量 十亿吨二氧化碳 billion tonnes carbon dioxide Other Global Emissions 其他国家排放量 China中国 US美国 Source: Historical 1950-2003 US and global emissions data from Oak Ridge National Laboratory, Carbon Dioxide Information Analysis Center; 2004-2006 US data from BP via Global Carbon Project. China 1950-2006 emissions data are derived from revised total energy consumption data published in the 2007 China Statistical Yearbook using revised 1996 IPCC carbon coefficients by LBNL 数据来源: 1950-2003年美国和全球的年排放数据来自橡树岭国家实验室二氧化碳信息分析中心;2004-2006年美国排放数据来自BP石油公司全球碳研究项目;1950-2006年中国的年排放数据是劳伦斯-伯克利国家实验室根据修正后的2007年中国统计年鉴中的总能源消费数据和1996 IPCC碳排放系数确定的.

  5. Between 1970 and 2004 global greenhouse gas emissions increased by 70%. Total GHG emissions WEO ’07 base casefor 2030has 55%increase from 2005(increase of25 Gt CO2 eq/yr) 60 55 Gt CO2eq/yr 50 45 40 35 30 25 20 15 10 5 0 2004 1970 1980 1990 2000

  6. IPCC (WGIII) Estimates of Economically Feasible CO2eq/yr Reductions in 2030 by Sector Total reductions Low: 13Gt/yr High 24Gt/y Constant emissions 25Gt/yr in 2030 6* 4* 4* 3* 3* 3* 2* * From “Design to Win (2007), a project of several foundations led by the Hewlett Foundation

  7. Annual Rate of Change in Energy/GDP for the World IEA (Energy/Purchasing Power Parity) and EIA (Energy/Market Exchange Rate) 2% - 1.3% Average = - 0.7% - 1.3% 1% 0% -1% -2% -3% IEA data EIA data 1982 1986 1990 1993 1994 1995 1997 1999 2001 1981 1983 1984 1985 1987 1988 1989 1991 1992 1996 1998 2000 -4% note: Russia not included until 1992 in IEA data and 1993 in EIA data

  8. Strategic Considerations • Two crucial immediate actions needed • (1) energy efficiency, (2) land use, and (3) cost-effective low carbon (electricity) supply • Very aggressive RD&D, especially on zero-carbon electricity (including electricity storage) • Much stronger government policies needed • Carbon tax (or cap and trade) • Rigorous policies are needed for all end-use sectors • Efficiency and fuel economy standards, building codes and retrofit requirements, and expanded demand-side management (DSM) • Few countries address industrial sector • Beyond energy efficiency: conservation and structural change • Change production processes (e.g., cement) • Change industrial output and consumption patterns • Lifestyle change

  9. 2 United States

  10. 1973 2005

  11. Source: David Goldstein

  12. United States Refrigerator Use (Actual) and Estimated Household Standby Use v. Time 2000 Estimated Standby 1800 Power (per house) 1600 1400 Refrigerator Use per 1978 Cal Standard Unit 1200 1987 Cal Standard Average Energy Use per Unit Sold (kWh per year) 1000 1980 Cal Standard 800 1990 Federal 600 Standard 400 1993 Federal Standard 2001 Federal 200 Standard 0 1947 1949 1951 1953 1955 1957 1959 1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009

  13. High # is worst

  14. High # is worst

  15. High # is worst

  16. 3 China

  17. Energy & GDP Growth in China中国的能源消费与国内生产总值(GDP)增长之间的关系 一次能源消费(百万兆焦耳) 中国的二氧化碳排放占世界总排放量的百分比(1950-2002) Estimated energy use at 1980 GDP energy intensity 基于1980年国内生产总值能源强度估计中国的能源消费 152 EJ (official GDP) 152百万兆焦耳 (正式公布的国内生产总值) 103 EJ (revised GDP) 103百万兆焦耳 (修正的国内生产总值) Primary Energy Use (EJ) Actual energy use 实际能源消费 58 EJ (actual) 58百万兆焦耳(实际) Source: China Energy Group, Lawrence Berkeley National Laboratory 数据来源:劳伦斯-伯克利国家实验室,中国能源与环境研究室

  18. Energy-conservation policies & measures in Phase II • R D & D • funded strategic technology development • funded demonstration projects • Information Services • national information network • national, local, and sectoral efficiency technical service centers • Education & Training • national, local, and sectoral efficiency training centers • Energy Conservation Week • school curricula • Energy Management • factory energy consumption quotas • factory energy conservation monitoring • efficient technology promotion • close inefficient facilities • controls on oil use • Financial Incentives • low interest rates for efficiency project loans • reduced taxes on efficient product purchases • incentives to develop new efficient products • monetary awards to efficient enterprises

  19. Energy and GDP, Path to 2020中国的能源消费与国内生产总值(至2020年) 能源消费(十亿吨标准煤) 2.7 36 国内生产总值(千亿2000年人民币元) energy target 能源目标 2.4 32 Actual energy 实际能源消费 28 2.1 24 1.8 Energy Consumed (billion tce) GDP target 国内生产总值目标 20 1.5 1.2 16 GDP (trillion 2000 RMB) Actual GDP 实际国内生产总值 0.9 12 0.6 8 0.3 4 0 0 Source: NBS, China Statistical Yearbook, various years; China Statistical Abstract 2005; growth estimates extrapolated from mid-year production data for 2005; targets announced by NDRC 数据来源:中国国家统计局,中国统计年鉴(各年);中国统计摘要(2005);2005年增长数据是基于2005年年中生产数据通过插值方法得到的;目标基于国家发展与改革委员会公布的数据

  20. Annual CO2 Emissions: US & China中美两国年二氧化碳排放比较 百万吨二氧化碳 US 美国 million tons carbon dioxide China 中国 Source: US annual emissions amounts reported by US EIA in the 2006 Annual Energy Review and 2007 Flash Estimate; China emissions are derived from revised total energy consumption data published in the 2007 China Statistical Yearbook using revised 1996 IPCC carbon emission coefficients by LBNL 数据来源: 美国的年排放数据来自美国能源部信息署2006年能源回顾和2007年初步估计;中国的年排放数据是由劳伦斯伯克利国家实验室根据修正后的2007年中国统计年鉴中的总能源消费数据和1996 IPCC碳排放系数确定的.

  21. Global, Chinese & U.S. Per-Capita Energy-Related CO2 Emissions – 1950-20041950-2004年全球、中国和美国的人均能源相关二氧化碳排放量 吨二氧化碳/人 US美国 tons CO2/person Global Average全球平均 China中国 Source: China emissions are derived from revised total energy consumption data published in the 2007 China Statistical Yearbook using revised 1996 IPCC carbon emission coefficients by LBNL; China population data from NBS and US Census (for 1950-51); global and American emissions data from Oak Ridge National Laboratory, Carbon Dioxide Information Analysis Center; global and American population data from US Census 数据来源:中国的年排放数据是劳伦斯伯克利国家实验室根据修正后的2007年中国统计年鉴中的总能源消费数据和1996 IPCC碳排放系数确定的.中国的人口数据来自中国国家统计局(其中1950-51年数据来自美国统计局);全球和美国的年排放数据来自橡树岭国家实验室二氧化碳信息分析中心;全球和美国人口数据来自美国统计局。

  22. China’s Cement Production 1990 – 2007 China’s Steel Production 1990 – 2007 Coal Use & Energy-Related CO2 煤炭消费与能源相关二氧化碳排放 中国的水泥生产量(1990-2007年) 中国的钢铁生产量(1990-2007年) Million Metric Tons 百万吨 Source: China Iron and Steel Association; Institute of Technical Information for the Building Materials Industry; U.S. Geological Survey 数据来源:中国钢铁协会;建筑材料工业技术情报研究所;美国国家地质调查局

  23. Rest of World 26% Cement Production Worldwide: 2007 世界水泥生产量2007 其他国家 Mexico 2% 墨西哥 Italy 2% 意大利 Turkey 2% 土耳其 Spain2% 西班牙 Russia 2% Rep of Korea 2% 俄罗斯 United States 4% (includes Puerto Rico) Japan 3% 韩国 日本 中国 India 6% China ~50% 美国(包括波多黎各) 印度 Source: U.S. Geological Survey 2008. Mineral Commodity Summaries: Cement; China National Bureau of Statistics, 2008 资料来源:美国地质调查局2008年。矿产品摘要:水泥;中国国家统计局2008年数据。

  24. Industrial Energy Intensities are Declining工业能源强度在下降 千克标准煤/2000年人民币元 2.0 Smelting & rolling of ferrous metals金属冶炼及压延加工 1.8 Petroleum, coke & nuclear石油,焦炭与核电 1.6 Non-metal mineral products非金属矿物制品 1.4 1.2 Chemicals化工 kgce/RMB (2000) 1.0 0.8 Non-ferrous metals有色金属 Coal煤 Paper造纸 0.6 0.4 Electricity电力 0.2 Textiles纺织 0 Source: China Energy Group, Lawrence Berkeley National Laboratory 资料来源:劳伦斯-伯克利国家实验室, 中国能源与环境研究室

  25. China has mounted an aggressive set of programs to reduce energy intensity by 20% from 2005 to 2010 • It is likely to achieve a 15% reduction in energy intensity • Because of large future CO2 emissions of China, there is a strong case to be made for international support for China to reduce growth of emissions

  26. 4 California

  27. California

  28. Per Capita Electricity Sales (not including self-generation)

  29. Annual Energy Savings from Efficiency Programs and Standards CEC (2005)

  30. Annual Usage of Air Conditioning in New Homes in California Annual drop averages 4% per year 3,000 Initial California Title 24 2,500 Building Standards 100% California Title 20 2,000 Appliance Standards Estimated Impact of 1976-1982 2006 SEER 12 Standards kWh/YEAR 1,500 1,000 33% 1992 Federal Appliance 500 Standard 0 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 Source: CEC Demand Analysis Office

  31. Annual Spending on Electricity Energy Efficiency (1976-2002) CEC Staff Report “Proposed Energy Savings Goals for Energy Efficiency Programs in California” (2003)

  32. Dramatic Increase in CA Utility DSM Program (2006-2008) Projected Spending on Electrical Energy Efficiency (2006-2008) Historical Spending on Electrical Energy Efficiency (1976-2002) CEC Staff Report “Proposed Energy Savings Goals for Energy Efficiency Programs in California” (2003)

  33. Projected Impact of EE programs in reducing utility load growth (2004-2013) • Utilities’ forecasted load growth without energy efficiency ranges from 1.1% to 2.4% annually • The three CA utilities expect to reduce electricity growth to <0.5%/year (by >75% from base case expectations) over coming 10 years!

  34. 5 Observations and Conclusions

  35. Greatest Needs to Reduce Energy Intensity • What we can’t do well enough = need for RD&D • Near zero-energy commercial buildings • Electricity storage, especially batteries for vehicles • Industrial process and product substitution (including “dematerialization”) • Changes in behavior and lifestyle • U.S. Policy • More rigorous standards and codes for buildings, industry, and automobiles • Transfer DSM capabilities among utilities • Open discussion of cap and trade vs. carbon tax • International, especially China and India • Phase out CDM – too expensive and not effective • Programs to support policies to reduce GHG emissions

More Related