1 / 48

Magnetic Superfluidity: Exploring Q-balls in 3He-A through HPD

This article discusses the phenomenon of magnetic superfluidity and its connection to Q-balls in 3He-A. It explores the discovery and properties of Homogeneous Precession of Magnetization (HPD) and its relevance to long-lived induction decay signals.

lguiterrez
Download Presentation

Magnetic Superfluidity: Exploring Q-balls in 3He-A through HPD

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Magnetic Superfluidity (from HPD to Q – ball) Yuriy M. Bunkov CRTBT - CNRS, Grenoble, France

  2. Spin supercurrent Fast relaxation in 3He-A Real explanation. Instability of homogeneous precession (Fomon, Borovik-Romanov, Bunkov, Dmitriev Mukharskiy) Review Strange Long Lived Induction Decay Signal • 1. Spin supercurrent • 2 20 years of homogeneously precessing domain • Other coherent magnetic states in 3He • 4. Q-balls

  3. HPD discovery 1984 A.S. Borovik-Romanov Yu.M. Bunkov V.V.Dmitriev Yu.M.Mukharsky I.A.Fomin • Closed geometry of the cell • Digital memory recorder. 1. 100% Long Lived IDS 2. Frequency changes with amplitude A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). I.A.Fomin, JETP Letters v.40, p.1036, (1984).

  4. eIf (r t) eIf (r t) f D ki D Mass superflow Spin supercurrent

  5. H Domain with Homogeneous Precession of Magnetization, 1984 D H

  6. H Domain with Homogeneous Precession of Magnetization, 1984 Domain with Homogeneous Precession of Magnetization, 1984 A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). Sov.Phys.JETPh, v.61, p.1199, (1985). I.A.Fomin, JETP Letters v.40, p.106, (1984). D H

  7. H D F Domain with Homogeneous Precession of Magnetization, 1984 Domain with Homogeneous Precession of Magnetization, 1984 A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). Sov.Phys.JETPh, v.61, p.1199, (1985). I.A.Fomin, JETP Letters v.40, p.1036, (1984). D H

  8. H Domain with Homogeneous Precession of Magnetization, 1984 Domain with Homogeneous Precession of Magnetization, 1984 A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). Sov.Phys.JETPh, v.61, p.1199, (1985). I.A.Fomin, JETP Letters v.40, p.1036, (1984). JM D H JM = A a + B b D D

  9. H d Ed g H = D d Sz Domain with Homogeneous Precession of Magnetization, 1984 Domain with Homogeneous Precession of Magnetization, 1984 A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). Sov.Phys.JETPh, v.61, p.1199, (1985). I.A.Fomin, JETP Letters v.40, p.1036, (1984). D H

  10. s S R(nQ) s H L s L R(nQ) H S Ed Ed 0 0 Lz Sz 1 1 Yu.M.Bunkov, G.E.Volovik, Homogeneously Precessing Domains in 3He-B, JETP, v.76, p. 794, (1993).

  11. R(n,Q) S H 104° Dipole energy Dipole + magnetic gradient energy L 104° D H 0° Brinkman – Smith mode • Magnetization conservation • Longitudinal Magnetization conservation

  12. JM RF Magnetization transport by Spin Supercurrent RF H D H Critical current + Spin vortex phase slippage

  13. Josephson effect JM RF RF H D H Linear and non-linear

  14. PS Coherent, Magnetically Excited States Grenoble, 1999 HPD Catastropha Catastrophic relaxation Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, J.Nyeki, D.A.Sergatskov, Europhysics Letters, v.8, p.645, (1989). PS

  15. Possible new coherent states Yu.M.Bunkov, G.E.Volovik, " Homogeneously Precessing Domains in 3He-B", JETP, v.76, p. 794, (1993). Yu.M.Bunkov, G.E.Volovik, "On the possibility of the Homogeneously Precessing Domain in Bulk 3He-A", Europhys. Lett, v. 21, p. 837 (1993) V.V.Dmitriev et all. States with fractional magnetization V.V.Dmitriev et all. Analog state in Fermi liquid at non-hydrodinamic regime

  16. s S R(nQ) s H L s L R(nQ) H S Ed Ed 0 0 Lz Sz 1 1 Yu.M.Bunkov, G.E.Volovik, Homogeneously Precessing Domains in 3He-B, JETP, v.76, p. 794, (1993).

  17. H D Nonwetting. conditions for coherent quantum precession Yu.M.Bunkov, O.D.Timofeevskaya, G.E.Volovik Phys. Rev. Lett., v. 73. p. 1817, (1994) + surfaceenergy L H S S S L L

  18. s S R(nQ) s H L s L R(nQ) H S Ed Ed 0 0 Lz Sz Sz Lz 1 1

  19. Surface Instability of Coherent Precession Yu.M. Bunkov, V.L. Golo, O.D. Timofeevskaya, Czechoslovak Journal of Phys. V. 46, S1, p. 213 (1996). Q Angles of deflection, degree S L Position, 0.1 mm

  20. Angles of deflection, degree Position, 0.1 mm

  21. 2. Coherenent State, which radiates the Persistent signal Lancaster Discovery, Lancaster, 1992 Yu.M.Bunkov, S.N.Fisher, A.M.Guenault, G.R.Pickett, Phys, Rev, Letters, v.69, p3092, (1992). Moscow Moscowresults Yu.M.Bunkov, S.N.Fisher, A.M.Guenault, G.R.Pickett, S.R.Zakazov, Physica B, v. 194, p. 827, (1994). ``Coherent Spin Precession and Texture in 3He-B.'' Yu.M. Bunkov, LT-21, Czechoslovak Journal of Phys. V. 46, S1, p. 231 (1996). Lancaster experimental conformation Yu.M. Bunkov, D.J. Cousins, M.P.Enrico, S.N.Fisher, G.R.Pickett, N.S.Shaw, W.Tych, LT-21, Czechoslovak Journal of Phys. V. 46, S1, p. 233 (1996).

  22. In 3He-B In relativistic field theory Q (r) = S - Sz(r) d3x[i(f*dtf - fdtf* )] Q = S+ (r) = S (r) e iwt f (r t) = exp(- imt) f (r) dEd dSz = Dw = gHdd(S,L) E(m) = d3x[ I fI2-mIfI2+ U(IfI)] D Q-ball - Spherically symmetric non-topological soliton with conserved global charge Q Proposed by S.Coleman (1985) in frame of relativistic field theory as a semi-classical model of elementary particles formation Current interest due to Q-balls dark matter model E(mQ)< SE(Q) m

  23. Sz In 3He-B 0 Q (r) = S - Sz(r) 1 Lz S+ (r) = S (r) e iwt dEd dSz = Dw 1 = gHdd(S,L) 0 Ed 1

  24. w W L 90° S x W L 90° S x

  25. W L 90° S x

  26. Spatial case Follow Voislav Golo algorithm (15 equations) S Yu.M.Bunkov, V.L.Golo, J Low Temp Phys, to be published L H + E grad + E surf

  27. Angles of deflection, degree Position, 0.1 mm

  28. Angles of deflection, degree Position, 0.1 mm

  29. Angles of deflection, degree Position, 0.1 mm

  30. Max NMR shift Larmore freq.

  31. H 3D Q-ball S L

  32. S L H Q ball on topological defect

  33. H H Computer simulation Grenoble 2004 H Follow Voislav Golo algorithm Calculations of a spatial deflection of spin and orbit on basis of Poisson brackets and Takagi relaxation z LH Lz

  34. Grenoble, 2004 Angles of deflection, degree Position, 0.1 mm

  35. Grenoble, 2004 Angles of deflection, degree Position, 0.1 mm

  36. 1% HPD

  37. S L H

  38. L Non-linear Stationary Spin Waves in Flared out texture First observation of Spin Waves in Orbital Texture D.D.Osheroff, Physica B, 90, 20 (1977). NMR of Rotated superfluid 3He-B O.T.Ikkala, G.E.Volovik, P.Y.Hakonen, Yu.M.Bunkov, S.T.Islander, G.A.Haradze, JETP Letters v.35, p.416 (1982). Before rotation During rotation After rotation H AngleL-H

  39. Grenoble experiments with Non-linear Stationary Spin Waves A.-S. Chen, Yu.M. Bunkov, H. Godfrin, R. Schanen, F. Scheffer. J. Low Temp. Phys, 110, p. 51, (1998). 0.25 Tc

  40. Non-linear Stationary Spin-waves – or Q ball, if you like! A.S. Chen,Yu. M. Bunkov, H. Godfrin, R. Schanen and F. Scheffler J. of Low Temp. Phys. 113, 693 (1998). Following Landau and Lifchitz we consider an anharmonic oscillator with a third order of nonlinearity

  41. w=gH+Hz D H D H w=gH Quantum billiard Anne-Sophie CHEN, Ph D Thesis, Grenoble, (1999)

  42. Grenoble, 1999 Off-resonante NMR excitation D.J.Cousins, S.N.Fisher, A.I.Gregory, G.R.Pickett, N.S.Shaw, Phys. Rev. Lett, 82, 4484, (1999) Anne-Sophie CHEN, Ph D Thesis, Grenoble, (1999) wrf wdd wQb wrf d p s

  43. Identity of Non-linear SSW and Persistent Signals . A.-S. Chen, Yu.M. Bunkov, H. Godfrin, R. Schanen, F. Scheffer. J. Low Temp. Phys, 110, p. 51, (1998). Grenoble, 1997

  44. Conclusions 1. First Excited Coherent Quantum State of 3He, discovered in 1984, has very reach magnetic extension of superfluid properties: The Spin supercurrent, Josephson phenomena, phase slippage, spin vortices, magnetis coherent states etc. was found 5. Many interesting results by Lancaster Group Spatial Manipulation of the Persistent Precessing Spin Domain in Superfluid 3He-B By: D. I. Bradley; D. O. Clubb; S. N. Fisher; A. M. Guénault; C. J. Matthews; G. R.Pickett;P.Skyba J. Low Temp.Phys, 134, 351, (2004 ) and references there 2. The catastrophic relaxation is now completely explained 3. Q ball - like structures forms and can be found experimentally in superfluid 3He as a localized modes of SSW. They can be attracted by topological defects. 3He is a very good experimental system for studying Q -balls. 4. PS radiates by SSW mode condensed in the minima of texture potential At low temperatures Orbital momentum participate in Magnetization precession 6. Off-resonance excitation, original properties of Q - ball type soliton solutions

  45. Min. d-d energy Vd Q = 104° S R(nQ) L=1, Lk = 0 S=1, Sd = 0 L H R(nQ) d L k H S Order parameter in superfluid 3He-B

  46. L=R(nQ) S L n S

More Related