1 / 9

对 m 1

R 2. R 1. T 1. T 2. m 1. m 2. m 1 g. m 2 g. 习题 3.2. 解:各物体受力如图:. 对 m 1. 对 m 2. 对滑轮. 另:. 转动惯量:. 解得:. 习题 3.3. a. 解:各物体受力如图:. T 2. T 1. 对 m 2. m 1 g. f. m 2 g. 对 m 1. a. 对滑轮. 习题 3.4. 解:. 细棒对转动轴的转动惯量为:. 球体对转动轴的转动惯量,根据平行轴定理可得:. 系统对转动轴的转动惯量为:. 转动轴的转动惯量的计算中,可用组合、拆分、填充、

lida
Download Presentation

对 m 1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. R2 R1 T1 T2 m1 m2 m1g m2g 习题3.2 解:各物体受力如图: 对m1 对m2 对滑轮 另: 转动惯量: 解得:

  2. 习题3.3 a 解:各物体受力如图: T2 T1 对m2 m1g f m2g 对m1 a 对滑轮

  3. 习题3.4 解: 细棒对转动轴的转动惯量为: 球体对转动轴的转动惯量,根据平行轴定理可得: 系统对转动轴的转动惯量为: 转动轴的转动惯量的计算中,可用组合、拆分、填充、 负质量等方法。

  4. 习题3.7   (解法一) 摩擦力矩为: 停止前所用时间:根据冲量矩定理得 停止前所转圈数:根据动能定理得

  5. 习题3.7  (解法二) 摩擦力矩为: 停止前所用时间:根据转动定理 停止前所转圈数:根据动能定理得

  6. 习题3.7  (解法三) 摩擦力矩为: 停止前所用时间:根据转动定理 因M、J为常数,知棒做匀减速转动,利用刚体匀变速转动公式: 令ω=0,得: 停止前所转圈数: 令ω=0,得:

  7. 习题3.11 解: (1)由转动定理得: (2)杆下摆的过程中机械能守恒,以初始杆所在位置为重力势能零势面,有

  8. 习题3.12 (1)弹性碰撞过程系统对转轴的角动量守恒,碰撞前、后动能相等,设碰后小球速度为v,杆摆动角速度为ω,则 解: 杆上摆过程机械能守恒,则有 (2)由冲量定理,小球动量的增量等于其所受的冲量,得

  9. 习题3.16 解: 收臂过程系统对转轴的角动量守恒,该过程中系统的机械能不守恒,因有非保守内力(肌力)做功,其所做的功等于系统动能的增量。 角动量守恒: 得: 由动能定理: 得:

More Related