1 / 31

On the SNR Exponent of Hybrid Digital Analog Space Time Coding

On the SNR Exponent of Hybrid Digital Analog Space Time Coding. Krishna R. Narayanan Texas A&M University http://ee.tamu.edu/~krn Joint work with Prof. Giuseppe Caire University of Southern California. s. s. s. K. 1. 2. ;. ;. :. :. :. ;. ^. ^. s. s. K. 1. ;. :. :. :. ;.

lilith
Download Presentation

On the SNR Exponent of Hybrid Digital Analog Space Time Coding

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. On the SNR Exponent ofHybrid Digital Analog Space Time Coding Krishna R. Narayanan Texas A&M University http://ee.tamu.edu/~krn Joint work with Prof. Giuseppe Caire University of Southern California

  2. Wireless Communications Lab, TAMU

  3. s s s K 1 2 ; ; : : : ; ^ ^ s s K 1 ; : : : ; What this talk is about • Transmit an analog source over a MIMO channel T uses of the channel Quasi-static (Block) Fading Encoder Receiver • Performance criterion : End to End quadratic distortion • How to best use multiple antennas to minimize distortion? Wireless Communications Lab, TAMU

  4. s s s K 1 2 ; ; : : : ; ^ ^ s s K 1 ; : : : ; Example 1: Streaming real-time video • Due to stringent delay constraints, we cannot code over many realizations of the channel • Channel changes from one block to another Quasi-static (Block) Fading Encoder Receiver Wireless Communications Lab, TAMU

  5. 1 H s s s K 1 2 ; ; : : : ; ^ ^ ^ ^ ^ ^ s s s s s s K K K 1 1 1 ; ; ; : : : : : : : : : ; ; ; Example 2: Broadcasting an analog source • Empirical distribution of Hl converges to some ensemble distribution as l !1 User 1 2 H Encoder User 2 User 3 3 H Wireless Communications Lab, TAMU

  6. N M £ C ( ) h h H C N 0 1 2 w e r e » i j H ( ) E [ ] ( [ ] ) h f l l l M N M N , l ; d h h i i X X X M T i i · t t · t t t > ( ) ; h d h l T i i i e c a s e o o w s a s a s m p e e x e n s o n x x s n o r m a z e s u c a r t t = ( ) T 1 d h l S N R S N R i i i s e u r a o n n c a n n e u s e s t t t t ; : : : ; , ½ e n o e s e g n a - o - o s e a o p ½ H T 1 t + y x w = = t t t M ; ; : : : ; Block Fading Channel Model Wireless Communications Lab, TAMU

  7. Diversity Multiplexing Tradeoff • Channel has zero capacity, we talk of outage capacity • For Pe() ! 0, we need SNR !1 • Makes sense to look at the exponent of SNR • Diversity gain : Pe() /-d • Multiplexing gain: Use many antennas to transmit many data streams • Zheng and Tse: Both are simultaneously achievable, there is a fundamental trade off of how much of each we can achieve Wireless Communications Lab, TAMU

  8. f ( ) g C d f l f d h C i i i i t l R o n s e r a a m y o s p a c e - m e c o n g s c e m e s ½ r o g ½ = r ( ) d ¡ c c c F l P r c ( ) ( ) o r a r g e ½ / ½ O l d d ¤ h h l i h l l i i i i i i t t t t t t o u a g e p m a e x p o n e n w e r e a s r a e n c r e a s e s r w s u a p s r s e m u p e x n g g a n ½ r r o g ½ r , = = c c c c Optimal D-M Tradeoff (Zheng and Tse) Wireless Communications Lab, TAMU

  9. ( ) ( ) ( ) d ¤ M N ¡ ¡ r r r = d*(r) for Rayleigh Fading Channels Wireless Communications Lab, TAMU

  10. ( ) N 0 1 s » i ; ¢ 1 2 E ( ) [ j j ] e D ( ) ( ) s s s ¡ l D ¡ K ½ 2 K 1 2 s s ½ R f d f M S E h S N R i D a ´ = o g ½ ( ) t t ; ; : : : ; S N R E l i a e o e c a y o w : f ( ) g K / ½ ¡ t F l f h l d h S C i i ´ x p o n e n : = a ´ m = ^ ^ a m y o s o u r c e - c a n n e c o n g s c e m e s ½ T ½ 1 l ( ) ( ) ! ? s s ´ o g ½ K 1 a ´ s u p a ´ = ; : : : ; Precise Problem Statement Fading Channel Source Channel Encoder Receiver SNR = Wireless Communications Lab, TAMU

  11. l l b b R R i i t t r r o o g g ½ ½ s s = = c s c s E h l T h i i 1 t t t t t q u a n g e x p o n e n s 2 w e g e e r e s u n e o r e m ¤ ( ) ¡ d ¡ ( ) ( ) ( ) S h R K R T R R i ( ) r D R D R P , D R · r · + + c n c e w e a v e ´ c a e = = ½ a ½ ´ Q s c c s s e p s s , s e p s Q Exponent for Separation Scheme MIMO Channel Sp-Time Code Not in outage In outage Wireless Communications Lab, TAMU

  12. Wireless Communications Lab, TAMU

  13. [ ] h h i b l b i T E 1 t t e o r e m x p o n e n a c e v a e y s e p a r a o n h ´ ? ? ( ( ) ( ) ( ) ) ( ) d d j j j j j 2 1 1 2 1 ¡ ¡ ¡ ¡ j 2 ( ) f M j 1 2 o r a ´ ´ = = ( ( ) ( ) ) ( ) ( ) s e p d d d d j j j j 2 1 1 ; ; : : : ; + ? ¡ ¡ ? ? ¡ ? , ´ h b l b d h l d h i i i ¤ t s a c e v a e y a a n e m s o u r c e - c a n n e c o n g s c e m e Main Results – Separation based approach • Comments – Separation is not optimal • Can we outperform the optimized separated scheme ? • Yes, we will see that later Wireless Communications Lab, TAMU

  14. h i 1 E ( ) D ¸ ½ d = 2 t H ( ) H ´ I H H ¡ ¢ + e ( ) l d H I H H R ½ · t + o g e ½ c Upper bound on the exponent • An upper bound is obtained by assuming that the channel is instantaneously known at the transmitter • Coding rate is chosen according to • Large SNR behavior can be analyzed using techniques similar to those in Zheng and Tse (Wishart distribution, Varadhan’s lemma) Wireless Communications Lab, TAMU

  15. [ ] h f d i b d T I 2 t t t e o r e m n o r m e r a n s m e r u p p e r o u n ( ) T h l d S N R b d d b ? i i i i t t t t e o p m a s o r o n e x p o n e n s u p p e r o u n e y a ´ M ½ ¾ 2 X ( ) j j ( ) M N i i 2 1 1 ¡ + ¡ a ´ m n = b u ; ´ i 1 = ¤ Upper bound Wireless Communications Lab, TAMU

  16. 1 ( ) l 1 + r o g ½ = s 2 1 1 ( ( ) ) D D ½ ½ = = 1 1 + + s s s s ½ ½ k k 1 1 ; ; : : : : : : ; ; n n k 1 n n ; : : : ; k Q 1 ; : : : ; The case for analog coding schemes – known SNR OR Decoder Channel code + MMSE estimate + Wireless Communications Lab, TAMU

  17. 1 ( ) l 1 + r o g ½ = s 2 s s k 1 ; : : : ; n n h k Q 1 ; : : : ; i Separation scheme with Fading • Separation based scheme is optimal only when ||hi||2 = 1 • Can be quite bad otherwise • Cannot exploit higher instaneous channel gain Decoder Channel code + Wireless Communications Lab, TAMU

  18. 1 ( ) h D s s ½ k 1 = i ; : : : ; j j j j 2 h ; 1 + n n ½ k 1 i h ; : : : ; i Analog scheme with Fading MMSE estimate + • Analog scheme is simultaneously optimal for all SNRs • Graceful degradation of MSE with SNR Wireless Communications Lab, TAMU

  19. Why Hybrid then? • Alas! things are never that easy • The optimality is valid only for the SISO channel with T = K • If more bandwidth is available, it is difficult to take advantage • Same with lesser bandwidth also • Hence, we need to look for hybrid digital and analog solutions Wireless Communications Lab, TAMU

  20. K ( ( ) ) d M M T £ £ ^ l ^ b X X K C C a i t d 2 2 M 2 e s s r o g e s s ½ s K K K 1 1 1 s ; ; ; : : : : : : : : : ; ; ; HDA Solution for T > K (Bandwidth expansion) • Involves some math, but the exponent can be analyzed • Express MSE as a function of the Eigen values, use the Wishart distribution and Varadhan’s lemma Space-Time Encoder Quantizer - Reconstruct Spatial Multiplexer Wireless Communications Lab, TAMU

  21. QAM Wireless Communications Lab, TAMU

  22. [ ] h b i d h l b d T H 3 T h b h h d i i e o r e m y r s c e m e o w e r o u n t t t t t t s s e e r a n e s e p a r a e e x p o n e n ( ) F B W h h b d d l l H D A d h i i i i i i i t t t o r e x p a n s o n e y r g a - a n a o g s p a c e - m e c o n g a c e v e s , µ ¶ ( ) ( ) ( ) d d ? ? j j j j 2 1 1 1 1 ¡ ¡ ¡ ¡ ( ) ( ) 1 1 + ¡ a ´ = h b d i y r 2 1 ( ) ( ) M d d j j 1 ? ? ¡ + ¡ ¡ ´ M ´ Exponent of Hybrid Digital Analog Coding Schemes Wireless Communications Lab, TAMU

  23. ( ( ) ) D M M T T £ £ X X C C a 2 2 ¡ M k h ¯ b d d S N R i i i i i ° t t t a n r c s n c o s n g o e e p e n e n o n a s ½ d i i i t a n o p m z n g ° HDA Scheme for T < K (Bandwidth Compression) bits Space-Time Encoder Quantizer + Spatial Multiplexer Wireless Communications Lab, TAMU

  24. Wireless Communications Lab, TAMU

  25. [ ] h b i d h l b d T H 3 e o r e m y r s c e m e o w e r o u n B d d h C i i t a n w o m p r e s s o n : M 2 ( ) M 2 ¸ a ´ ´ = h b d i y r ; ´ Exponent of HDA Schemes • It is remarkable that this is equal to the upper bound • Hence it is optimal Wireless Communications Lab, TAMU

  26. F l l l h l M o r p a r a e c a n n e s M ( ) M i a m n = b u ; 2 ´ Upper bound for the Parallel Channel Wireless Communications Lab, TAMU

  27. Scalar channel M = N = 1 Wireless Communications Lab, TAMU

  28. MIMO M = N = 2 Wireless Communications Lab, TAMU

  29. Comments • SISO Channel with fading • Even if T > K, the best exponent is 1 • More bandwidth does not buy us anything • It is the degrees of freedom, not the bandwidth that is important • For this case, the exponent for the entire region is fully known • Gunduz-Erkip - infinite layers of superposition coding is optimal • Our approach is much simpler Wireless Communications Lab, TAMU

  30. MIMO Case • However, in the MIMO case things are different • More bandwidth helps us buy diversity • Antennas can be used to compress • It is very easy to find practical schemes to get the correct exponent • For example, uniform scalar quantization is optimal at high SNRs! • We may require very large SNR for the asymptotics to kick in Wireless Communications Lab, TAMU

  31. Outlook • Our conjecture is that the upper bound is loose (it is not entirely clear) for the bandwidth expansion case • Better constructive schemes to improve the achievable part • In some sense, the key problem is to find a better exponent for the parallel channel Wireless Communications Lab, TAMU

More Related