1 / 44

the lambda calculus

the lambda calculus. David Walker CS 441. the (untyped) lambda calculus. a language of functions e ::= x | x.e | e1 e2 v ::= x.e there are several different ways to evaluate lambda calculus expressions so far, we’ve studied left-to-right, call-by-value:

limei
Download Presentation

the lambda calculus

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. the lambda calculus David Walker CS 441

  2. the (untyped) lambda calculus • a language of functions e ::= x | \x.e | e1 e2 v ::= \x.e • there are several different ways to evaluate lambda calculus expressions • so far, we’ve studied left-to-right, call-by-value: • amazingly, despite it’s minimalism, the lambda calculus is Turing complete and may serve as a foundation for all computation (b) (\x.e) v --> e [v/x] e2 --> e2’ v e2 --> v e2’ e1 --> e1’ e1 e2 --> e1’ e2 (app2) (app1)

  3. extending the lambda calculus • lambda calculus with booleans: e ::= x | true | false | test | \x.e | e1 e2 v ::= true | false | test | \x.e e1 --> e1’ (test1) test e1 e2 e3 --> test e1’ e2 e3 e2 --> e2’ e3 --> e3’ (test2) (test3) test v1 e2 e3 --> test v1 e2’ e3 test v1 v2 e3 --> test v1 v2 e3’ (test-false) (test-true) test true v2 v3 --> v2 test false v2 v3 --> v3 + all the other lambda calculus rules

  4. booleans: the translation • from +boolean into pure : translate(true) = \t.\f. t translate(false) = \t.\f. f translate(test) = \x.\y.\z. x y z translate(x) = x translate(\x.e) = \x.(translate(e)) translate(e1 e2) = translate(e1) translate(e2) target language values in the source language always get translated into values in the target language source language

  5. (b) boolean translation (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) example: translate(test true s1 s2) = (\x.\y.\z.x y z) (\x.\y.x) v1 v2 (where v1 = translate s1 and v2 = translate s2) e2 --> e2’ v e2 --> v e2’ (app2)

  6. (b) boolean translation (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) example: translate(test true s1 s2) = (\x.\y.\z.x y z) (\x.\y.x) v1 v2 (where v1 = translate s1 and v2 = translate s2) in the source language we have: test true s1 s2 --> s1 e2 --> e2’ v e2 --> v e2’ (app2)

  7. (b) boolean translation (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) example: translate(test true s1 s2) = (\x.\y.\z.x y z) (\x.\y.x) v1 v2 (where v1 = translate s1 and v2 = translate s2) in the source language we have: test true s1 s2 --> s1 so in the target we want: (\x.\y.\z.x y z) (\x.\y.x) v1 v2 --> v1 e2 --> e2’ v e2 --> v e2’ (app2)

  8. (b) boolean translation (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) example: translate(test true s1 s2) = (\x.\y.\z.x y z) (\x.\y.x) v1 v2 (where v1 = translate s1 and v2 = translate s2) in the source language we have: test true s1 s2 --> s1 so in the target we want: (\x.\y.\z.x y z) (\x.\y.x) v1 v2 --> v1 e2 --> e2’ v e2 --> v e2’ (app2)

  9. (b) boolean translation (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) Theorem (Translation Preserves Semantics): If s1 --> s2 (in the lambda calculus with booleans) then (translate(s1)) --> (translate(s2)) (in the pure lambda calc) e2 --> e2’ v e2 --> v e2’ (app2)

  10. booleans (b) (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) (((\x.\y.\z.x y z) (\x.\y.x)) v1) v2 --> _____________ e2 --> e2’ v e2 --> v e2’ (app2)

  11. booleans (b) (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) ((\x.\y.\z.x y z) (\x.\y.x)) v1) --> ___________ (((\x.\y.\z.x y z) (\x.\y.x)) v1) v2 --> _____________ v2 e2 --> e2’ v e2 --> v e2’ (app2) e1 (app1) e1 e1’

  12. booleans (b) (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) (\x.\y.\z.x y z) (\x.\y.x) --> ___________ (\x.\y.\z.x y z) (\x.\y.x)) v1 --> ___________ v1 (((\x.\y.\z.x y z) (\x.\y.x)) v1) v2 --> _____________ v2 e2 --> e2’ v e2 --> v e2’ (app2) (b) (app1) (app1)

  13. booleans (b) (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) \x.\y.\z.x y z (\x.\y.x) --> \y.\z.x y z [\x.\y.x / x] ((\x.\y.\z.x y z) (\x.\y.x)) v1) --> v1 (((\x.\y.\z.x y z) (\x.\y.x)) v1) v2 --> v2 e2 --> e2’ v e2 --> v e2’ (app2) (b) (app1) (app1)

  14. booleans (b) (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) \x.\y.\z.x y z (\x.\y.x) --> \y.\z.(\x.\y.x) y z ((\x.\y.\z.x y z) (\x.\y.x)) v1) --> v1 (((\x.\y.\z.x y z) (\x.\y.x)) v1) v2 --> v2 e2 --> e2’ v e2 --> v e2’ (app2) (b) (app1) (app1)

  15. booleans (b) (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) \x.\y.\z.x y z (\x.\y.x) --> \y.\z.(\x.\y.x) y z ((\x.\y.\z.x y z) (\x.\y.x)) v1) --> (\y.\z.(\x.\y.x) y z) v1 (((\x.\y.\z.x y z) (\x.\y.x)) v1) v2 --> v2 e2 --> e2’ v e2 --> v e2’ (app2) (b) (app1) (app1)

  16. booleans (b) (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) (\x.\y.\z.x y z) (\x.\y.x) --> \y.\z.(\x.\y.x) ((\x.\y.\z.x y z) (\x.\y.x)) v1) --> \y.\z.(\x.\y.x) v1 (((\x.\y.\z.x y z) (\x.\y.x)) v1) v2 --> \y.\z.(\x.\y.x) v1 v2 e2 --> e2’ v e2 --> v e2’ (app2) (b) (app1) (app1)

  17. booleans translate(true) = \t.\f. t translate(false) = \t.\f. f translate(and) = \b.\c. b c (translate(false)) translate(x) = ... translate(and true true) = (\b.\c. b c (\t.\f.f)) (\t.\f.t) (\t.\f.t)

  18. booleans translate(true) = \t.\f. t translate(false) = \t.\f. f translate(and) = \b.\c. b c (translate(false)) translate(x) = ... translate(and true true) = (\b.\c. b c (\t.\f.f)) (\t.\f.t) (\t.\f.t) ===> wow is that ever tough to read ...

  19. booleans tru = \t.\f. t fls = \t.\f. f a = \b.\c. b c fls translate(and true true) = a tru tru = (\b.\c. b c fls) tru tru target language expression (ie: a and tru are just meta-variables I’m using to abbreviate and make more readable the translated term)

  20. booleans tru = \t.\f. t fls = \t.\f. f a = \b.\c. b c fls a tru tru = (\b.\c. b c fls) tru tru --> (\c.tru c fls) tru (b) (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) e2 --> e2’ v e2 --> v e2’ (app2)

  21. booleans tru = \t.\f. t fls = \t.\f. f a = \b.\c. b c fls a tru tru = (\b.\c. b c fls) tru tru --> (\c.tru c fls) tru --> tru tru fls (b) (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) e2 --> e2’ v e2 --> v e2’ (app2)

  22. booleans tru = \t.\f. t fls = \t.\f. f a = \b.\c. b c fls a tru tru = (\b.\c. b c fls) tru tru --> (\c.tru c fls) tru --> tru tru fls = (\t.\f. t) tru fls (b) (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) e2 --> e2’ v e2 --> v e2’ (app2)

  23. booleans tru = \t.\f. t fls = \t.\f. f a = \b.\c. b c fls a tru tru = (\b.\c. b c fls) tru tru --> (\c.tru c fls) tru --> tru tru fls = (\t.\f. t) tru fls -->(\f. tru) fls (b) (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) e2 --> e2’ v e2 --> v e2’ (app2)

  24. booleans tru = \t.\f. t fls = \t.\f. f a = \b.\c. b c fls a tru tru = (\b.\c. b c fls) tru tru --> (\c.tru c fls) tru --> tru tru fls = (\t.\f. t) tru fls -->(\f. tru) fls --> tru (b) (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) e2 --> e2’ v e2 --> v e2’ (app2)

  25. if statements (b) e ::= x | v | e1 e2 | if e1 then e2 else e3 v ::= \x.e | true | false (\x.e) v --> e [v/x] e1 --> e1’ e1 e2 --> e1’ e2 (app1) e2 --> e2’ v e2 --> v e2’ (app2) e1 --> e1’ (if1) if e1 then e2 else e3 --> if e1’ then e2 else e3 (if2) if true then e2 else e3 --> e2 (if3) if false then e2 else e3 --> e3

  26. An Example loop = (\x.x x) (\x.x x) if (\x.x) true then \x.x else loop --> if true then \x.x else loop --> \x.x

  27. booleans • what is wrong with the following translation? translate true = tru translate false = fls translate (if e1 then e2 else e3) = test (translate e1) (translate e2) (translate e3) translate (\x.e) = \x.(translate e) translate (e1 e2) = (translate e1) (translate e2)

  28. pure lambda terms: tru = \t.\f.t fls = \t.\f.f tst = \x.\y.\z. x y z booleans • what is wrong with the following translation? translate true = tru translate false = fls translate (if e1 then e2 else e3) = tst (translate e1) (translate e2) (translate e3) ... -- e2 and e3 will both be evaluated regardless of whether e1 is true or false -- the target program might not terminate in some cases when the source program would

  29. (b) example (\x.e) v --> e [v/x] e2 --> e2’ v e2 --> v e2’ (app2) e1 --> e1’ e1 e2 --> e1’ e2 (app1) translate (if (\x.x) true then \x.x else loop) = tst translate((\x.x) true) (translate(\x.x)) (translate(loop)) = tst ((\x.x) tru) (\x.x) (loop) = tst ((\x.x) tru) (\x.x) ((\x.x x) (\x.x x))

  30. (b) example (\x.e) v --> e [v/x] e2 --> e2’ v e2 --> v e2’ (app2) e1 --> e1’ e1 e2 --> e1’ e2 (app1) translate (if (\x.x) true then \x.x else loop) = tst translate((\x.x) true) (translate(\x.x)) (translate(loop)) = tst ((\x.x) tru) (\x.x) (loop) = tst ((\x.x) tru) (\x.x) ((\x.x x) (\x.x x)) tst ((\x.x) tru) (\x.x) ((\x.x x) (\x.x x)) --> tst tru (\x.x) ((\x.x x) (\x.x x))

  31. (b) example (\x.e) v --> e [v/x] e2 --> e2’ v e2 --> v e2’ (app2) e1 --> e1’ e1 e2 --> e1’ e2 (app1) translate (if (\x.x) true then \x.x else loop) = tst translate((\x.x) true) (translate(\x.x)) (translate(loop)) = tst ((\x.x) tru) (\x.x) (loop) = tst ((\x.x) tru) (\x.x) ((\x.x x) (\x.x x)) tst ((\x.x) tru) (\x.x) ((\x.x x) (\x.x x)) --> tst tru (\x.x) ((\x.x x) (\x.x x)) (((\x.\y.\z. x y z) tru) (\x.x)) ((\x.x x) (\x.x x)) -->

  32. (b) example (\x.e) v --> e [v/x] e2 --> e2’ v e2 --> v e2’ (app2) e1 --> e1’ e1 e2 --> e1’ e2 (app1) translate (if (\x.x) true then \x.x else loop) = tst translate((\x.x) true) (translate(\x.x)) (translate(loop)) = tst ((\x.x) tru) (\x.x) (loop) = tst ((\x.x) tru) (\x.x) ((\x.x x) (\x.x x)) tst ((\x.x) tru) (\x.x) ((\x.x x) (\x.x x)) --> tst tru (\x.x) ((\x.x x) (\x.x x)) (((\x.\y.\z. x y z) tru) (\x.x)) ((\x.x x) (\x.x x)) --> ((\y.\z. tru y z) (\x.x)) ((\x.x x) (\x.x x)) -->

  33. (b) example (\x.e) v --> e [v/x] e2 --> e2’ v e2 --> v e2’ (app2) e1 --> e1’ e1 e2 --> e1’ e2 (app1) translate (if (\x.x) true then \x.x else loop) = tst translate((\x.x) true) (translate(\x.x)) (translate(loop)) = tst ((\x.x) tru) (\x.x) (loop) = tst ((\x.x) tru) (\x.x) ((\x.x x) (\x.x x)) tst ((\x.x) tru) (\x.x) ((\x.x x) (\x.x x)) --> test tru (\x.x) ((\x.x x) (\x.x x)) (((\x.\y.\z. x y z) tru) (\x.x)) ((\x.x x) (\x.x x)) --> ((\y.\z. tru y z) (\x.x)) ((\x.x x) (\x.x x)) --> (( \z. tru (\x.x) z) ) ((\x.x x) (\x.x x)) -->

  34. (b) example (\x.e) v --> e [v/x] e2 --> e2’ v e2 --> v e2’ (app2) e1 --> e1’ e1 e2 --> e1’ e2 (app1) translate (if (\x.x) true then \x.x else loop) = tst translate((\x.x) true) (translate(\x.x)) (translate(loop)) = tst ((\x.x) tru) (\x.x) (loop) = tst ((\x.x) tru) (\x.x) ((\x.x x) (\x.x x)) tst ((\x.x) tru) (\x.x) ((\x.x x) (\x.x x)) --> tst tru (\x.x) ((\x.x x) (\x.x x)) (((\x.\y.\z. x y z) tru) (\x.x)) ((\x.x x) (\x.x x)) --> ((\y.\z. tru y z) (\x.x)) ((\x.x x) (\x.x x)) --> (( \z. tru (\x.x) z) ) ((\x.x x) (\x.x x)) --> (( \z. tru (\x.x) z) ) ((\x.x x) (\x.x x)) -->

  35. (b) example (\x.e) v --> e [v/x] e2 --> e2’ v e2 --> v e2’ (app2) e1 --> e1’ e1 e2 --> e1’ e2 (app1) translate (if (\x.x) true then \x.x else loop) = tst translate((\x.x) true) (translate(\x.x)) (translate(loop)) = tst ((\x.x) tru) (\x.x) (loop) = tst ((\x.x) tru) (\x.x) ((\x.x x) (\x.x x)) tst ((\x.x) tru) (\x.x) ((\x.x x) (\x.x x)) --> tst tru (\x.x) ((\x.x x) (\x.x x)) (((\x.\y.\z. x y z) tru) (\x.x)) ((\x.x x) (\x.x x)) --> ((\y.\z. tru y z) (\x.x)) ((\x.x x) (\x.x x)) --> (( \z. tru (\x.x) z) ) ((\x.x x) (\x.x x)) --> (( \z. tru (\x.x) z) ) ((\x.x x) (\x.x x)) --> (( \z. tru (\x.x) z) ) ((\x.x x) (\x.x x)) --> ...

  36. booleans • we saw this translation didn’t work: translate (if e1 then e2 else e3) = tst (translate e1) (translate e2) (translate e3) • we need to delay execution of e2, e3 until the right time: translate (true) = \x.\y.(x (\x.x)) translate (false) = \x.\y.(y (\x.x)) translate (if e1 then e2 else e3) = (\x.\y.\z. x y z) (translate e1) (\w.translate e2) (\w.translate e3) ... other cases ...

  37. pairs • would like to encode the operations • create e1 e2 • fst p • sec p • pairs will be functions • when the function is used in the fst or sec operation it should reveal its first or second component respectively

  38. pairs create = \x.\y.\b. b x y fst = \p. p tru tru = \x.\y.x sec = \p. p fls fls = \x.\y.y

  39. pairs create = \x.\y.\b. b x y fst = \p. p tru tru = \x.\y.x sec = \p. p fls fls = \x.\y.y fst (create tru fls) = fst ((\x.\y.\b. b x y) tru fls)

  40. pairs create = \x.\y.\b. b x y fst = \p. p tru tru = \x.\y.x sec = \p. p fls fls = \x.\y.y fst (create tru fls) = fst ((\x.\y.\b. b x y) tru fls) -->* fst (\b. b tru fls)

  41. pairs create = \x.\y.\b. b x y fst = \p. p tru tru = \x.\y.x sec = \p. p fls fls = \x.\y.y fst (create tru fls) = fst ((\x.\y.\b. b x y) tru fls) -->* fst (\b. b tru fls) = (\p.p tru) (\b. b tru fls)

  42. pairs create = \x.\y.\b. b x y fst = \p. p tru tru = \x.\y.x sec = \p. p fls fls = \x.\y.y fst (create tru fls) = fst ((\x.\y.\b. b x y) tru fls) -->* fst (\b. b tru fls) = (\p.p tru) (\b. b tru fls) --> (\b. b tru fls) tru

  43. pairs create = \x.\y.\b. b x y fst = \p. p tru tru = \x.\y.x sec = \p. p fls fls = \x.\y.y fst (create tru fls) = fst ((\x.\y.\b. b x y) tru fls) -->* fst (\b. b tru fls) = (\p.p tru) (\b. b tru fls) --> (\b. b tru fls) tru --> tru tru fls = (\x.\y.x) tru fls --> (\y.tru) fls --> tru

  44. and we can go on... • numbers • arithmetic expressions (+, -, *,...) • lists, trees and datatypes • exceptions, loops, ... • ... • the general trick: • values will be functions – construct these functions so that they return the appropriate information when called by an operation

More Related