1 / 47

AB balance

AB balance. Acidosis. Alkalosis. - log [H + ] = pH. [ H + ] (nmol/l) 38 – 42 pH 7.36 – 7.44 P CO2 (kPa) 5.0 – 5.5 [ H CO 3 - ] (nmol/l) 22 – 26. AB values in plasma. [ H + ] (nmol/l) 38 – 42

Download Presentation

AB balance

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AB balance Acidosis Alkalosis

  2. - log [H+] = pH

  3. [H+](nmol/l) 38 – 42 pH 7.36 – 7.44 PCO2 (kPa) 5.0 – 5.5 [HCO3- ](nmol/l) 22 – 26 AB values in plasma

  4. [H+](nmol/l) 38 – 42 pH 7.36 – 7.44 PCO2 (kPa) 5.0 – 5.5 [HCO3- ](nmol/l) 22 – 26 AB values in plasma Base excess­2.5 –+2.5 Anion gap= (Na++K+) - (Cl-+HCO3-)

  5. Changes in ABB x Acidosis Alkalosis Acidemia Alkalemia x Respiratory Metabolic PCO2 [H+], [HCO3- ]

  6. ABB Bicarbonate HCO3- / CO2 Buffers Non-bicarbonate Hb- / oxy-Hb- H2PO4-, NH4+ Lungs Compensation Kidney + Liver

  7. METABOLIC ACIDOSIS I Diabetes mellitus, starvation -oxidation FA ketoacids Exrcise, hypoxia anaerobic glykolysis lactate 1. Cause – increased production / intake H+ Poisoning by acid

  8. METABOLIC ACIDOSIS II Disfunction loss of HCO3 retention H+ loss of HCO3 2. Cause – kidney disorder lumen proximal tubule blood H + H2O HCO3- H+ + HCO3- resorption OH - CAIV HCO3- CAII CO2 CO2 H+ ATPáza ATP H2O H + H+ elimination HCO3- resorption OH - HCO3- CAII CO2

  9. METABOLIC ACIDOSIS III Na+ ATP K+ 3. Cause / result – hyperkalemia [ H+] [ K+] Acidosis  Hyperkalemia

  10. Henderson - Hasselbach equation - log [H+] = pH H+ + HCO3- = CO2 + H2O [HCO3-] ———— PCO2 6.1 pH = pKa + log

  11. [HCO3-] ———— PCO2 pH = 6.1+ log Henderson - Hasselbach - log [H+] = pH H+ + HCO3- = CO2 + H2O [HCO3-] [CO2] • 8.0 • 7.4 • 7.0

  12. MAC H+ H+ + HCO3-CO2 + H2O [HCO3-] [CO2] • 8.0 • 7.4 • 7.0

  13. MAC H+ 2H+ + HCO3-CO2 + H2O [HCO3-] [CO2] • 8.0 • 7.4 • 7.0

  14. MAC H+ 2H+ +2HCO3-CO2 + H2O [HCO3-] [CO2] Buffer • 8.0 • 7.4 • 7.0

  15. MAC [HCO3-] [CO2] H+ 2H+ +2HCO3-2CO2+ 2H2O • 8.0 • 7.4 • 7.0

  16. [HCO3-] [CO2] MAC H+ 2H+ +2HCO3-2CO2+ 2H2O • 8.0 • 7.4 • 7.0 Chemoreceptors stimulation

  17. 3) Kidney:  elimination H+,  resorption HCO3- MAC H+ Expiration by lungs 2H+ +2HCO3-2CO2+ 2H2O [HCO3-] [CO2] • 8.0 • 7.4 • 7.0 1) Buffer: Bicarbonate Chemoreceptors stimulation 2) Lungs: hyperventilation

  18. Metabolic acidosis - summary acetoacetát a β-hydroxybutyrát

  19. METABOLIC ALKALOSIS Increased bicarb. uptake infusion HCO3- loss of H+ Vomiting Hypokalemia Alkalosis  Hypokalemia Compensation of MAL Hypoventilation - impossible ! Kidney:  elimination HCO3-!!! Cause:

  20. RESPIRATORY ACIDOSIS retention CO2  [H+]pH 2) Kidney:  elimination H+, NH4+, resorption HCO3- Cause: Lung, thorax disorder CO2 + H2O H+ + HCO3- Compensation of RAC 1) Buffers: non-bicarbon. bufers

  21. RESPIRATORY ALKALOSIS decrease of PCO2 • [H+] pH 1) Bufferinf.: non-bicarb. adding H+ 2) Kidney:  elimination HCO3-, sekretion H+ Cause: Hyperventilation, high altitude CO2 + H2O H+ + HCO3- Compensation of RAL

  22. Questions Questions

  23. Q 11 • Q11: Match each item in the top (lettered) column with appropriate item in the bottom (numbered) column. “Increased” or “decreased” is used with reference to normal physiological values. • Diabetic ketoacidosis • Hypoventilation • Excessive ingestion of sodium bicarbonate • Increased plasma pH, increased plasma bicarbonate, alkaline urine • Decreased plasma pH, decreased plasma bicarbonate, acidic urine • Decreased plasma pH, increased plasma bicarbonate, acidic urine Increased plasma pH, increased plasma bicarbonate, alkaline urine c. Decreased plasma pH, decreased plasma bicarbonate, acidic urine a. Decreased plasma pH, increased plasma bicarbonate, acidic urine b

  24. What pH would be in the urine of vegetarian? Vegetarians food rich in HCO3-  Increased uptake of basis Compensation by kidney HCO3- in urine  Alcalic urine

  25. What is the first aid in panic attack, why? Hyperventilation  Decrease of PCO2on plasma  First aid: reinhalation of CO2  Ventilation into the bag Panic attack

  26. Lung illness Lung illness Obstructive Restrictive air passage (AP) lung Bronchoconstriction Inflammation, mucus Bronchus tumour Surrounding compression – nodule … Lung fibrosis Edema Atelektasis Pneumothorax …  Resistance AP Lung compliance Expiratory whistling  Respiratory motion Inspiratory position of the thorax Weakened breading

  27. Why not to serve oxygen to the patient with COPD ? Chronic obstructive pulmonary disease  Adaptation of central chemoreceptors  Periferal chemoreceptors - stimulated by low pO2 O2 100%O2might abolish this hypoxic drive ! Retention of CO2  Chronic respiratory acidosis

  28. What is the cause of death in MAC? Diarrhea  [ H+] Na+ loss of HCO3- in GIT [ K+]  Change in RMP, depolarization  Neuromuscular irritability  EKG Vetricular fibrilation Metabolic acidosis Hyperkalemia

  29. transport in distal tubule Hypo-, hyper-calcemia Arthur C. Guyton, John E. Hall, Textbook of Medical Physiology Elsevier, 10th edition (2000)

  30. Cell response to intracellular acidosis or alkalosis Boron

  31. Buffer systems

  32. HCO3- proximal, ascending loop Na+-H+ exchanger Proximal tubule, thick ascending loop of Henle, early distal tubule Arthur C. Guyton, John E. Hall, Textbook of Medical Physiology Elsevier, 10th edition (2000)

  33. Dist tub HCO3- Cl- -HCO3- exchange Late distal tubule and collecting duct Urine H+ incerased 900x Arthur C. Guyton, John E. Hall, Textbook of Medical Physiology Elsevier, 10th edition (2000)

  34. Phosphate buffer Proximal and early distal tubule Arthur C. Guyton, John E. Hall, Textbook of Medical Physiology Elsevier, 10th edition (2000)

  35. Role of liver in ABB proteine metabolism ammonia (NH3) ammonium ion (NH4+)

  36. NH4+ proxi Proximal tubule, thick ascending limb of the loop of Henle, distal tubule Arthur C. Guyton, John E. Hall, Textbook of Medical Physiology Elsevier, 10th edition (2000)

  37. NH4+ collect Collecting duct ammonia (NH3) ammonium ion (NH4+) Arthur C. Guyton, John E. Hall, Textbook of Medical Physiology Elsevier, 10th edition (2000)

  38. Transport CO2 1. 2. in plasma

  39. Diagnosis of Acid-Base Imbalances • Acidosis or alcalosis? Note whether the pH is low (acidosis) or high (alkalosis) • Respiratory or metabolic? Decide which value, pCO2 or HCO3- , is outside the normal range and could be the cause of the problem. If the cause is a change in pCO2, the problem is respiratory. If the cause is HCO3- the problem is metabolic. • No or partial compensation? Look at the value that doesn’t correspond to the observed pH change. If it is inside the normal range, there is no compensation occurring. If it is outside the normal range, the body is partially compensating for the problem

  40. Example • A patient is in intensive care because he suffered a severe myocardial infarction 3 days ago. The lab reports the following values from an arterial blood sample: • pH 7.3 • HCO3- = 20 mEq / L ( 22 - 26) • pCO2 = 32 mm Hg (35 - 45) ??Diagnosis?? Acidosis Metabolic With compensation

  41. summary Full compensation - pH in normal rank (7.35 - 7.45) Partial compensation - pH still shifted

  42. Respiratory acidosis

  43. Respiratory alkalosis

  44. Metabolic acidosis

  45. Metabolic alkalosis

  46. …………..

More Related