540 likes | 1.1k Views
The Management of Spasticity after SCI A Systematic Review of the literature, 2000-2010. Systematic Review – Management of Spasticity.
E N D
The Management of Spasticity after SCIA Systematic Review of the literature, 2000-2010
Systematic Review – Management of Spasticity • Compiled by the Shepherd Center Study Group in Atlanta, GA. Innovative Knowledge Dissemination & Utilization Project for Disability & Professional Stakeholder Organizations/ NIDRR Grant # (H133A050006) at Boston University Center for Psychiatric Rehabilitation.
Systematic Review – Management of Spasticity • A review was conducted using a system for rating the rigor and meaning of disability research (Farkas, Rogers and Anthony, 2008). • The first instrument in this system is: “Standards for Rating Program Evaluation, Policy or Survey Research, Pre-Post and Correlational Human Subjects” (Rogers, Farkas, Anthony & Kash, 2008) and “Standards for Rating the Meaning of Disability Research” (Farkas & Anthony, 2008).
Shepherd Center Systematic Review Group Leadership Team: Reviewers: • Lesley Hudson, MS • David Apple, MD • Deborah Backus, PhD, PT • Rebecca Acevedo • Leslie VanHiel, MSPT • Jennith Bernstein, PT • Amanda Gillot, OT • Ashley Kim, PT • Elizabeth Sasso, PT • Kristen Casperson, PT • Anna Berry, PT • Liz Randall, SPT • Data Coordinator: Editor:
Glossary of Abbreviations • General • SCI - Spinal cord injury • ASIA – American Spinal Injury Association • AIS – ASIA Impairment Scale • ISNCSCI – International Standards for the Neurological Classification of Spinal Cord Injury Assessment (formerly ASIA exam)
Glossary of Abbreviations • Research Studies and Interventions • RCT – Randomized control trial • LE – Lower extremity • ROM – Range of motion • TENS – Transcutaneous electrical nerve stimulation • rTMS - Repeated transcranial magnetic stimulation • eSCS - Spinal cord electrical stimulation • FES – Functional electrical stimulation • WBV – Whole body vibration
Glossary of Abbreviations • Outcome Measures for Research Studies • AS – Ashworth Scale • MAS – Modified Ashworth Scale • CSS - Composite spasticity score (based on several AS scores) • VAS – Visual Analog Scale • MPSFS – Modified Penn Spasm Frequency Scale • SCATS – Spinal Cord Assessment Tool for Spastic Reflexes • SCI-SET – Spinal Cord Injury Spasticity Evaluation Tool • Hmax/Mmax – Electrophysiological ratio measure of neural excitability • EMG - Electromyography
Definitions of Spasticity • Involuntary muscle firing • Velocity-dependent • Increase resistance to stretch • Abnormal processing of sensory input within networks of neurons in the spinal cord networks. • There are many definitions of spasticity, but the most referenced: • Lance, 1980: “Spasticity is a motor disorder characterized by a velocity-dependent increase in tonic stretch reflexes (muscle tone) with exaggerated tendon jerks, resulting from hyperexcitability of the stretch reflex, as one component of the upper motor neuron syndrome.”
Other Definitions • Decq’s definition, 2003 : “…a symptom of the upper motor neuron syndrome characterized by an exaggeration of the stretch reflex secondary to hyperexcitability of spinal reflexes.” It separates: • Intrinsic tonic spasticity: exaggeration of the tonic component of the stretch reflex (hypertonia). • Intrinsic phasic spasticity: exaggeration of the phasic component of the stretch reflex (hyper-reflexia, clonus, velocity-dependent resistance). • Extrinsic spasticity: exaggeration of extrinsic flexion or extension spinal reflexes (spasms, withdrawal reflex). Adams & Hicks, Spinal Cord, 2005
Positive Effects of Spasticity • Spasticity may: • Be used to help with transfers, standing,walking, and ADLs. • Help prevent muscle atrophy. • Muscles may appear to be healthier compared to those without spasticity. http://www.dinf.ne.jp/doc/english/global/david/dwe001/dwe001g/dwe00136g06.jpg
Negative Effects of Spasticity • However, spasticity may also lead to: • Decreased range of motion (ROM) • Inability to position the limbs safely • Limited mobility • Difficulty performing personal hygiene • Discomfort and pain andgodlaughs.blogspot.com
Is Treatment Necessary? • If mild, wait and see? • Questions to ask: • Does it cause pain? • Interfere with sleep? • Make function unsafe? • Cause secondary issues of - • Poor posture / asymmetric seating? • Pressure sores? • Make care difficult? • Affect hygiene? • Will treatment improve quality of life and safety?
Treatment Goals • Relieve signs & symptoms • Decrease frequency and severity of spasticity • Improve function • Gait • Posture • Reach and grasp for ADLs • Improve ease of care
Evaluate Patient: Does spasticity/ overactivity interfere significantly with function? Measures must include all aspects of spasticity Will it lead to musculoskeletal deformity? Patient Evaluation and Treatment Planning No treatment necessary No Yes • Functional Objectives • Improve gait, hygiene, ADLs, pain relief, ease of care • Decrease spasm frequency & severity • Patient and Caregiver Objectives • Identify patient and caregiver goals • Technical Objectives • Promote tone reduction, improved range of motion, joint position • Decrease spasm frequency • Decrease hyper-reflexia Spasticity Management Program MODIFIED from Spasticity Treatment Planning. WEMOVE.org, 2005.
Spasticity is an ongoing problem, despite treatment options. • Traditional and surgical treatment options are routinely used to decrease spasticity… • Yet, many persons with SCI continue to have problems related to spasticity: • More than half of all persons surveyed with chronic SCI report symptoms and sequelae of spasticity (Sköld, et al. 1999; Maynard, et al. 1990). • Persons with cervical and motor incomplete injuries seem to have spasticity that is more frequent and more severe.
Conservative Treatment Options • Pharmacological Management • Baclofen – oral or pump (intrathecal) • Adjunct Dantrolene, Zanax, or Valium • Physical and Occupational Therapy • Range of motion (ROM) exercises & prolonged stretching • Casting or splinting • Electrical stimulation - transcutaneous nerve stimulation (TENS) • Acupuncture • Massage
If other options don’t work… • Surgery involves cutting pathways in the nervous system thought to be involved in spasticity. • However, forms of electrical stimulation to the spinal cord (epidural spinal cord stimulation) and electromagnetic stimulation to the brain (transcutaneous magnetic stimulation - TMS) may mimic the effects of surgical interventions.
Spasticity and its management in SCI is multi-faceted. • Spasticity is no longer just an extremity’s resistance to quick movement. • It includes spasms, overall hypertonia, hyper-reflexia, and clonus. • The optimal treatment for each of these different aspects of spasticity is not yet clear. • The literature related to spasticity has not been evaluated in terms of what is meaningful to persons with SCI.
Purpose of Review • To evaluate all published research from the past 10 years related to the management of spasticity after spinal cord injury (SCI) to determine which evidence may be: • Meaningful to persons with SCI who have spasticity (e.g. includes level and completeness of injury). • Related to any type of spasticity a person may experience (velocity-dependent resistance, spasms, hypertonia, clonus).
Definitions of types of spasticity used in this review • Velocity-dependent resistance = phasic (quick and short lasting)spasticity of resistance felt when an extremity is moved quickly • Hypertonia = tonic (longer lasting, co-contraction) spasticity of increased resistance to movement throughout range • Spasms = phasic spasticity of body movement into a flexor or extensor pattern • Clonus = phasic spasticity of repeated movement of a body part when positioned with the muscle stretched • Hyper-reflexia = increased reflex response (e.g. the knee reflex response)
The Review • Conducted by 7 clinicians. • Included all articles published between 2000 and 2010 related to the treatment of spasticity in persons with SCI. • All articles rated on quality of the science & meaningfulness to persons with SCI, or their caregivers and clinicians, or payers. • Any article of high quality that was meaningful was considered for this summary.
Study Designs Accepted for Review • Experimental: Employed methods including a random assignment and a control group or a reasonably constructed comparison group. • Quasi-experimental: No random assignment, but either with a control group or a reasonably constructed comparison group. • Descriptive: Neither a control group, nor randomization, is used. These included case studies and reports, studies employing repeated measures, and pre-post designs.
Search Results • Of 49 papers reviewed: • Seven papers met criteria of quality and meaningfulness. • Only 3 of the 7 papers defined spasticity, and these all differed. • Each of the 7 papers used different outcome measures of spasticity. • These are ongoing problems with research in this area.
Experimental Study Design:Overview • 2 of 7 studies used a randomized controlled trial (RCT). • Both of these studies used electrical stimulation for the treatment. • 2 studies were longitudinal cohort designs. • 1 study was a case study. • 1 study used a pre-post design. • 1 study used a cross-over design.
Results: Reduction in Resistance and Clonus with TENS • TENS group showed significant decrease in: • Composite Spasticity Score (29.5%, p=0.017) • Resistance to full passive range at ankle dorsiflexion (31%, p=0.024) • Ankle clonus (29.6%, p=0.023) • Notes: • Anti-spasticity medications were allowed. • No significant differences between groups at baseline. Chung & Cheng 2009
RCT of TMS: Sample Notes • 11 of 15 using Baclofen • 4 of 15 on no anti-spasticity meds • Not all traumatic SCIs: • 4 of 15 etiology = tumor • 4 of 15 etiology = myelitis Kumru et al., 2010
Results: Decrease in Some Spasticity, Motor Control Still Disordered • Neurophysiological function did not change. • TMS group, but not sham group, significantly decreased: • MAS score (p<0.006) • not significantly different between those with traumatic & non-traumatic SCI • MPSFS (p=0.01) • SCATS (p<0.04) • SCI-SET (p=0.003) • MAS, SCATS, & SCI-SET results maintained one week after last session (p=0.049). Kumru et al., 2010
Results (cont.): • 14 of 15 reported significant improvement in pain on VAS (p<0.002). • Was maintained in 13 of 15 at end of the week after TMS (p=0.004) • No significant change in measures when sham only. Kumru et al., 2010
Experimental Study Design: Summary of RCTs • In persons with acute or chronic, motor complete or incomplete,paraplegia or tetraplegia, applying electrical stimulation peripherally (i.e. at the common peroneal nerve or the nerve innervating the muscle antagonistic to the spastic muscle, Chung & Cheng, 2009), or electromagnetic stimulation centrally (i.e. over the primary motor cortex, Kumru et al., 2010) for motor incomplete injuriesled to a significant reduction in several different aspects of spasticity: • Velocity-dependent resistance to stretch • Spasms • Hypertonia • Hyper-reflexia • Clonus
Descriptive Study Design: Longitudinal Study, Epidural E-stim
Results: Epidural Stim Reduced Some Aspects of Spasticity • Significant reduction in: • EMG activity in left and right legs (p=0.004, p=0.0035, respectively). • Except for quadriceps when analyzed independently • Ashworth score (p=0.0117) • 7 of 8 participants discontinued anti-spasticity medication. Pinter et al., 2000
Strength Decreased, BUT Spasticity Decreased More • Dose-dependent decreases in: • Ashworth score (p<0.01) • Bilateral lower extremity strength (p<0.001) • H/M ratio • EMG amplitude and duration of the plantar withdrawal reflex • Decrease in strength was less than decrease in spasticity. • After withdrawal of medication, the rebound in spasticity was less than increase in strength.
Results: Strength Same, BUT Reports of Reduced Spasticity • No change in elicited peak torque before, immediately after, or one week afterpassive cycling. • 6 of 10 participants reported reduced spasticity immediately after cycling. Kakebeeke et al., 2005
Results: Both Active & Passive Cycling Show Some Effects • Greater & significant increase in relaxation index (RI) after FES cycling (68%) than after passive cycling (12%) (p=0.01). • Peak velocity (PV) significantly increased after FES cycling, unchanged after passive cycling (p=0.01). • MAS decreased significantly for both FES cycling (p<0.001) and passive cycling (p<0.05). * Participants were not on anti-spasticity medications.
Descriptive Study Design: Longitudinal, Whole Body Vibration
Results: Long Lasting Effects with WBV • Significant reduction in quadriceps spasticity (p=0.005). • Significant reduction within session (range p=0.005 to 0.006 for weeks 1, 2, 4). • No significant difference between those on anti-spasticity meds and those not. • Effects lasted at least 6-8 weeks post-intervention. Ness LL, Field-Foté EC, 2009
Medications Varied • 7 of 16 on Baclofen • 1 of 16 on Tizanidine • 9 of 16 on no spasticity medication Ness LL, Field-Foté EC, 2009
Descriptive Study Design: Summary of Studies • These studies provide further support that: • stimulating the nervous system (e.g. electrical stimulation), OR • altering the excitability in the nervous system (e.g. Baclofen) can lead to a reduction in spasticity in persons with complete or incomplete tetraplegia or paraplegia.
Methodological Considerations • Definitions of spasticity differ: • A motor disorder characterized by a velocity-dependent increase in tonic stretch reflex, exaggerated tendon jerks; includes clonus, involuntary muscle contractions or spasms, and muscle co-contraction (Lance, 1980) • Includes intrinsic tonic spasticity (i.e. the exaggeration of the tonic component of the stretch reflex, hypertonia), intrinsic phasic spasticity (i.e. the exaggeration of the phasic component of the stretch reflex or hyper-reflexia and clonus), and extrinsic spasticity, (i.e., the exaggeration of extrinsic flexion or extension spinal reflexes, spasms) (Adams & Hicks, 2005).
Study Limitations • Spasticity syndrome may be worse in people with cervical and incomplete injuries than those with thoracic and complete injuries. (Kirshblum, 1999; Maynard et al, 1990; Sköld et al, 1999). • Even though studies included persons with complete and incomplete paraplegia and tetraplegia, as well as acute and chronic injuries,results were averaged and reported as a whole. • It remains unknown whether there is a differential response to the interventions.
Study Limitations • Studies included persons with chronic SCI, who may have musculoskeletal consequences to chronic spasticity. • Chronic spasticity has musculoskeletal effects, namely muscle shortening and contractures (Gracies et al., 1997). • Musculoskeletal parameters were not assessed in any of these studies. Improvements may have been neural or musculoskeletal or both. • Improving one and not the other may preclude maximal improvements.
Study Limitations • There were no functional assessments. • Whether reducing spasticity is necessary and sufficient for improving motor control and function remains unclear. • There were no studies addressing the cost-effectiveness of treatments for spasticity.
Recommendations • Any stakeholder interested in the evidence related to the management of spasticity after SCI should consider: • Outcome measures differed across all studies. • Different aspects of spasticity may be affected by a given intervention. • For instance, if spasms are the worse aspect of spasticity, rTMS, eSCS, or baclofen (all with evidence of reducing spasms in persons with SCI) may be pursued. • Those with velocity-dependent resistance to stretch may choose TENS or rTMS, but rTMS may give the best results overall if there are multiple areas related to spasticity.