1 / 31

Virgielcollege

Virgielcollege. Mede mogelijk gemaakt door uw Eerstejaarsch Commissie. Hoe ziet vandaag eruit?. Studeerkunde – 10 min Analyse – 35 min Pauze – 15 min Analyse – 20 min Tentamenvragen – 25 min. Studeerkunde. Hoe studeer je?. Studeerkunde Analyse Tentamen. Studeerkunde.

lindsey
Download Presentation

Virgielcollege

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Virgielcollege Mede mogelijk gemaakt door uw Eerstejaarsch Commissie

  2. Hoe ziet vandaag eruit? Studeerkunde – 10 min Analyse – 35 min Pauze – 15 min Analyse – 20 min Tentamenvragen – 25 min

  3. Studeerkunde Hoe studeer je? Studeerkunde Analyse Tentamen

  4. Studeerkunde Discipline - Op tijd opstaan - ‘Combineer’ discipline, geen geheelonthouding - Gewoon doen! Plannen - Stel haalbare doelen - Schets mogelijke scenario’s - Leg duidelijke prioriteiten wanneer dat nodig is - Plan in dagdelen (‘s morgens, ‘s middags, ‘s avonds) - Plan resultaatgericht Studeerkunde Analyse Tentamen

  5. Studeerkunde Makkelijk punten scoren - Prioriteit bij projecten - Beter 2 zessen dan 3 vijven - Makkelijk vakken doen - Let op vervolgvakken Verder - Thuis of UB, wat werkt voor jou het beste? - Regelmaat, afleiding (toko eten etc.) Studeerkunde Analyse Tentamen

  6. Studeerkunde ? !!! Studeerkunde Analyse Tentamen

  7. Calculus Differentiation Integration Analyse 1 • Trigonometry • - Logarithms • Complexe Numbers • Vectors • -Limits • - Differentials • - Productrule • Chain Rule • Impliciet Differentiëren • Differential Equations • - Integrals • Substitution • - Integration by Parts Studeerkunde Analyse Tentamen

  8. Calculus Appendix D: TrigonometryAppendix H: Complex numbersH12: Vectors and the geometry of spaceH2: Limits and derivatives

  9. APPENDIX DTrigonometry c b a What exactly is a cosine or sine? Calculus Differentiëren Integreren

  10. APPENDIX DTrigonometry Calculus Differentiëren Integreren

  11. APPENDIX DTrigonometry 30o 2 60o 1 1 45o 1 Calculus Differentiëren Integreren

  12. APPENDIX HComplex numbers Complex numbers are ‘imaginary’, but very useful in engineering situations. Especially Euler’s formula. Calculus Differentiëren Integreren

  13. CHAPTER 12Vectors and the geometry of space A vector is a point in space, and can be used to visualize a mathematical problem. Calculus Differentiëren Integreren

  14. CHAPTER 12Vectors and the geometry of space Important formulas concerning vectors Length of a vector Angle between two vectors Volume determined by three vectors Calculus Differentiëren Integreren

  15. CHAPTER 12Vectors and the geometry of space Parametric equations of a line Parametric equations of a function Calculus Differentiëren Integreren

  16. DifferentiërenH3, H4, H9

  17. Differentials Power Rule Constant Multiple Rule Sum Rule ‘Core Analysis Business’, very important for engineering purposes. Lot of different notations. Calculus Differentiëren Integreren

  18. Product- & Quotiëntregel Calculus Differentiëren Integreren

  19. Chain Rule If g is differentiable at x and f is differentiable at g(x), then the composite function F= f o g defined by F(x) = f(g(x)) is differentiable at x and F’ is given by the product: Calculus Differentiëren Integreren

  20. Implicit Differentiation Occurs when functions are defined implicitly by a relation between x and y such as: For example, differentiate with respect to x, Calculus Differentiëren Integreren

  21. Implicit Differentiation Because y is a function of x, apply chain rule: !!! Calculus Differentiëren Integreren

  22. IntegrationH5, H7

  23. Integrals The Fundamental Theorem of Calculus states that if: Calculus Differentiëren Integreren

  24. Integrals • There are two important techniques for integrals: • Integration by parts • Substitution Rule Mind the Chain Rule! Calculus Differentiëren Integreren

  25. TentamenWTB & MT, Januari 2008 Studeerkunde Analyse Tentamen

  26. Studeerkunde Analyse Tentamen

  27. Studeerkunde Analyse Tentamen

  28. Studeerkunde Analyse Tentamen

  29. Studeerkunde Analyse Tentamen

  30. Studeerkunde Analyse Tentamen

  31. Vragen?

More Related