310 likes | 394 Views
Virgielcollege. Mede mogelijk gemaakt door uw Eerstejaarsch Commissie. Hoe ziet vandaag eruit?. Studeerkunde – 10 min Analyse – 35 min Pauze – 15 min Analyse – 20 min Tentamenvragen – 25 min. Studeerkunde. Hoe studeer je?. Studeerkunde Analyse Tentamen. Studeerkunde.
E N D
Virgielcollege Mede mogelijk gemaakt door uw Eerstejaarsch Commissie
Hoe ziet vandaag eruit? Studeerkunde – 10 min Analyse – 35 min Pauze – 15 min Analyse – 20 min Tentamenvragen – 25 min
Studeerkunde Hoe studeer je? Studeerkunde Analyse Tentamen
Studeerkunde Discipline - Op tijd opstaan - ‘Combineer’ discipline, geen geheelonthouding - Gewoon doen! Plannen - Stel haalbare doelen - Schets mogelijke scenario’s - Leg duidelijke prioriteiten wanneer dat nodig is - Plan in dagdelen (‘s morgens, ‘s middags, ‘s avonds) - Plan resultaatgericht Studeerkunde Analyse Tentamen
Studeerkunde Makkelijk punten scoren - Prioriteit bij projecten - Beter 2 zessen dan 3 vijven - Makkelijk vakken doen - Let op vervolgvakken Verder - Thuis of UB, wat werkt voor jou het beste? - Regelmaat, afleiding (toko eten etc.) Studeerkunde Analyse Tentamen
Studeerkunde ? !!! Studeerkunde Analyse Tentamen
Calculus Differentiation Integration Analyse 1 • Trigonometry • - Logarithms • Complexe Numbers • Vectors • -Limits • - Differentials • - Productrule • Chain Rule • Impliciet Differentiëren • Differential Equations • - Integrals • Substitution • - Integration by Parts Studeerkunde Analyse Tentamen
Calculus Appendix D: TrigonometryAppendix H: Complex numbersH12: Vectors and the geometry of spaceH2: Limits and derivatives
APPENDIX DTrigonometry c b a What exactly is a cosine or sine? Calculus Differentiëren Integreren
APPENDIX DTrigonometry Calculus Differentiëren Integreren
APPENDIX DTrigonometry 30o 2 60o 1 1 45o 1 Calculus Differentiëren Integreren
APPENDIX HComplex numbers Complex numbers are ‘imaginary’, but very useful in engineering situations. Especially Euler’s formula. Calculus Differentiëren Integreren
CHAPTER 12Vectors and the geometry of space A vector is a point in space, and can be used to visualize a mathematical problem. Calculus Differentiëren Integreren
CHAPTER 12Vectors and the geometry of space Important formulas concerning vectors Length of a vector Angle between two vectors Volume determined by three vectors Calculus Differentiëren Integreren
CHAPTER 12Vectors and the geometry of space Parametric equations of a line Parametric equations of a function Calculus Differentiëren Integreren
Differentials Power Rule Constant Multiple Rule Sum Rule ‘Core Analysis Business’, very important for engineering purposes. Lot of different notations. Calculus Differentiëren Integreren
Product- & Quotiëntregel Calculus Differentiëren Integreren
Chain Rule If g is differentiable at x and f is differentiable at g(x), then the composite function F= f o g defined by F(x) = f(g(x)) is differentiable at x and F’ is given by the product: Calculus Differentiëren Integreren
Implicit Differentiation Occurs when functions are defined implicitly by a relation between x and y such as: For example, differentiate with respect to x, Calculus Differentiëren Integreren
Implicit Differentiation Because y is a function of x, apply chain rule: !!! Calculus Differentiëren Integreren
Integrals The Fundamental Theorem of Calculus states that if: Calculus Differentiëren Integreren
Integrals • There are two important techniques for integrals: • Integration by parts • Substitution Rule Mind the Chain Rule! Calculus Differentiëren Integreren
TentamenWTB & MT, Januari 2008 Studeerkunde Analyse Tentamen