370 likes | 702 Views
Synchronization Aspects in LTE. 389.075 Mobile Communication Seminar. Qi Wang July 3rd, 2008. Outline. LTE PHY Synchronization in OFDM From WiMAX to LTE Synchronization in WiMAX LTE Frame Structure Conclusion. LTE Physical Layer. New Features to Cellular Application
E N D
Synchronization Aspects in LTE 389.075 Mobile Communication Seminar Qi Wang July 3rd, 2008
Outline • LTE PHY • Synchronization in OFDM • From WiMAX to LTE • Synchronization in WiMAX • LTE Frame Structure • Conclusion
LTE Physical Layer • New Features to Cellular Application • Orthogonal Frequency Division Multiplexing (OFDM) • Multiple Input Multiple Output (MIMO) • OFDMA on downlink • SC-FDMA on uplink • Frequency domain scheduling
LTE Physical Layer slot
Outline • LTE PHY • Synchronization in OFDM • From WiMAX to LTE • Synchronization in WiMAX • LTE Frame Structure • Conclusion
Carrier Frequency Error in OFDM Received signal: e.g. subcarrier spacing = 15kHz, 10ppm.Osc at 2.5GHz, Fractional Frequency Offset (~0.665) + Integer Frequency Offset (1) + Residual Frequency Offset (~0.002) : Carrier Frequency Offset normalized in subcarrier spacing N: FFT size Carrier Frequency Offset (~1.667)
OFDM Synchronization 2.Fractional Frequency Offset Estimation 3.Integer Frequency Offset Estimation Frequency Offset Correction 1. Frame Start Detection Remove CP FFT 4. Residual Frequency Offset Tracking
Outline • LTE PHY • Synchronization in OFDM • From WiMAX to LTE • Synchronization in WiMAX • LTE Frame Structure • Conclusion
WiMAX Frame Structure 1st Preamble: frame start detection, fractional frequency offset estimation 0 0 255 0 0 0 2nd Preamble: Integer frequency offset estimation 0 0 0 0 0 0 0 0 13 0 0 8 pilots on subcarriers {13 38 63 88 114 139 164 189}: Residual frequency offset tracking 0 0 0 frequency 0 0 0 time
1. Frame Detection 2.Fractional Frequency Offset Estimation 3.Integer Frequency Offset Estimation preamble preamble Frequency Offset Correction 1. Frame Start Detection Remove CP FFT pilot tones 4. Residual Frequency Offset Tracking
1. Frame Detection 1st Preamble in time domain: Estimated Frame Start CP 64 64 64 64
2. Fractional Frequency Offset 2.Fractional Frequency Offset Estimation 3.Integer Frequency Offset Estimation preamble preamble Frequency Offset Correction 1. Frame Start Detection Remove CP FFT pilot tones 4. Residual Frequency Offset Tracking
2. Fractional Frequency Offset 1st Preamble in time domain: Calculate the phase difference:
3. Integer Frequency Offset 2.Fractional Frequency Offset Estimation 3.Integer Frequency Offset Estimation preamble preamble Frequency Offset Correction 1. Frame Start Detection Remove CP FFT pilot tones 4. Residual Frequency Offset Tracking
3. Integer Frequency Offset ReceivedPreambleshiftedby 2i DefinedPreamble DefinedPreamble: Estimated integer frequency offset ReceivedPreamble:
4. Residual Frequency Offset 2.Fractional Frequency Offset Estimation 3.Integer Frequency Offset Estimation preamble preamble Frequency Offset Correction 1. Frame Start Detection Remove CP FFT pilot tones 4. Residual Frequency Offset Tracking
4. Residual Frequency Offset 0 average over l OFDM symbols average over k pilot subcarriers 0 255 FFT size 0 0 0 0 0 0 Cyclic Prefix length 0 0 • : received pilot in th • OFDM symbol • : pre-defined pilot in • th OFDM symbol 0 0 0 13 0 0 0 0 0 frequency 0 0 0 time
Outline • LTE PHY • Synchronization in OFDM • From WiMAX to LTE • Synchronization in WiMAX • LTE Frame Structure • Conclusion
LTE Frame Structure Resource Block Resource Element
Synchronization Signals • Primary Synchronization Signals • identical in slot 0 and 10 • mapped to 72 centre subcarriers • Secondary Synchronization Signals • Different in slot 0 and 10 • Mapped to 62 centre subcarriers 72 subcarrier
Reference Signals 1 Subframe 1ms 2 Resource Blocks Antenna Port 0 Antenna Port 1 Antenna Port 1
Reference Signals Antenna Port 0 Antenna Port 1 Antenna Port 2 Antenna Port 2
Reference Signals Antenna Port 0 Antenna Port 1 Antenna Port 2 Antenna Port 3 Antenna Port 3
Reference Signals Antenna Port 0 Antenna Port 1 Antenna Port 2 Antenna Port 3
Conclusion: Synchronization in LTE DL 2.Fractional Frequency Offset Estimation 3.Integer Frequency Offset Estimation Primary & Secondary Synchronization Signals Primary Synchronization Signals Frequency Offset Correction 1. Frame Start Detection Remove CP FFT 4. Residual Frequency Offset Tracking Reference Signals Primary & Secondary Synchronization Signals
Reference 3GPP TS 36.211 V8.2.0 3rd Generation Prtnership Project; Technical Specification group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8), March 2008 Freescale, ”Overview of the 3GPP Long Term Evolution Physical Layer,” 2007. E. Dahlman, S. Parkvall, J. Sköld, P. Beming: “3G Evolution: HSPA and LTE for Mobile Broadband“, Elsevier 2007. M. Morelli, C.-C Jay Guo, M. Pun: “Synchronization Techniques for Orthogonal Frequency Division Multiple Access (OFDMA): A Tutorial Review“, Proc. IEEE, vol. 95, No.7, July 2007. T. M. Schmidl, D. C. Cox: “Robust Frequency and Timing Synchronization for OFDM“, IEEE Tran. Comm. Vol. 45, No. 12, Dec. 1997. Y. Yan, M. Tomisawa, Y. gong, Y. Guan, G. Wang, C. Law, Joint timing and frequency synchronization for IEEE 802.16 OFDM systems, Mobile WiMAX Symposium, 2007. IEEE
Simulation Result WiMAX SISO throughputwith Timing Offset = 89, Carrier Frequency Offset = pi, in the Pedestrian B Channel, 500 frame simulation Perfectsynchronized Both Timing Offset andFrequency Offset Corrected OnlyFrequency Offset Corrected Only Timing Offset Corrected
Simulation Result WiMAX SISO throughput, Carrier Frequency Offset = = 3.1416, Pedestrian B Channel, 500 frames simulation Symbol-wise Residual Frequency Offset Estimation Without Residual Frequency Offset Correction Frame-wise Residual Frequency Offset Estimation PerfectlyCorrected WithoutCarrierFrequency Offset Correction