1 / 23

Ю.Г. Куденко

Вторые Марковские чтения Дубна-Москва, 12-13 мая 2004 г. Редкие распады каонов. Ю.Г. Куденко. Институт ядерных исследований РАН. CKM матрица : K  pnn и B распады K L  p 0 nn K +  p + nn. Дубна , 12 мая 2004. 1. CKM matrix.

linnea
Download Presentation

Ю.Г. Куденко

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Вторые Марковские чтения Дубна-Москва, 12-13 мая 2004 г. Редкие распады каонов Ю.Г. Куденко Институт ядерных исследований РАН CKM матрица: K pnn и B распады KL p0nn K+  p+nn Дубна, 12 мая 2004 1

  2. CKM matrix K and B decays as a test of the SM and CP-violation in the SM  - CP violating parameter 2

  3. KL p0nn and K+  p+nn in SM Flavor – changing neutral current decays Br(KL0)  Im(VtdVts)2  1.8•10-102A4X2(xt)  2 Br(K++)  e,,,|VcdVcsXlNL + VtdVtsX2(xt)|2  [(0  )2 + 2] From isospin symmetry Br(KL0)  4.4Br(K++)  2x10-9 Theory SM Br(KL0) = (2.6 ± 1.2)x10-11 Br(K++) = (7.7 ± 1.1)x10-11 3

  4. Unitarity triangle from B and K Comparison of |Vtd|fromK++ and Ms/ Mdimportant test of SM Comparison of sin2fromBr(KL0)/Br(K++) and A(BJ/Ks) definitive test of CP- violation in SM 4

  5. K pnnbeyond the SM (Nir and Worrah, Phys. Lett. B319, 1998) Low energy SUSY, Minimal Flavor Violation, Multiple Higgs K  pnn beyond the SM Model Br(K  pnn) x 1011 A.Buras, hep-ph/0109197 review SM and beyond G.Isidori, hep-ph/0101121 SUSY  27 (K+),  40 (K0) T.Yanir, hep-ph/0205073 4th generation of fermions  60 (K+),  400 (K0) M.S.Chanowitz, hep-ph/9905478 SU(2)Lx SU(2)R Higgs 2.8 – 10.6 C.-H.Chen, hep-ph/0202188 SUSY gluino exchange 15 (K+) A.Buras et al., hep-ph/0402112 non-SM 30(K0)/7.7(K+) H.G.He, G.Valencia, hep-ph/0404229 right-handed Z’ 14(K0)/15(K+) 5

  6. K+  p+nn Measurement of K+  p+nn Physics backgrounds Decay BR PID veto kinematics K+  +0 0.21 - ++ + K+  + 0.63 + - + K+  + 0.005 + + - K+  +0 0.032 + ++ - K+  e+0 0.048 + ++ - K+  +- + 0.056 - + ++ K+  +  310-11 (SM) Region 1 Region 2 Only K+  + produces pions with momentum  205 MeV/c 6

  7. E787/E949 detector 7

  8. Method Experimental method • - 700 MeV/c K+ beam /K  1/3 • stop K+ in active target • delay 2 ns for K+ decay • momentum measurement in drift chamber • p/p  2.5 % • measurement of range R and energy E • in target and range stack RS • stop + in range stack • detection +  +  e+ chain in RS • veto photons and charge particles 8

  9. Suppression of neutrals GOAL:Observation of + in the momentum region 211 < p <229 MeV/c + no other detector activity Average photon inefficiency  10-3 – 10-4 Suppresion of K K Ke3K E949 Region 1 E787 0 detection inefficiency 10-6 for photon threshold = 1 MeV Supression: 1  10-3 0  10-6 9

  10. Backgrounds K, K … K Signal box K 10

  11.     e chain Suppression factor 10-5 Sample pulse height every 2 ns +stops in RS (2cm/layer) ++E = 4.1 MeV R  1mm  = 26 ns +  e+ Ee  53 MeV  = 2.2 s 11

  12. K+  p+nn acceptance E949 acceptance = 0.0022 12

  13. Event display No other concidence signal in detector K+  p+nn event range stack    T-counter drift chamber kaon pulse target 13

  14. Signal all cuts applied Signal region K background 14

  15. ResultK+  p+nn E949 Stopped kaons 1.8  1012 Total acceptance 0.22  0.02 % Signal 1 Background 0.30  0.03 E949 + E787 K+  p+nn1 + 2 (from E787) = 3 Br(K++) = (1.47 + 1.30 – 0.89) x 10-10 (hep-ex/0403036) consistent with the SM predictions 0.006 < |Vtd| < 0.027 t = VtsVtd = A25(1--i) 0.2410-3 <|t|<1.0810-3 analysis below K peak is under way 15

  16. KL p0nn from kTeV KL p0nn kTeV at FNAL: “pencil” KL beam Dalitz decay mode p0  e+e-  signal: pt > 160 MeV/c Phys.Rev. Br(KL0)  5.9x10-7 (90% c.l.) Phys.Rev.D61:072006,2000 16

  17. KEK E391a Expected sensitivity of 10-9 - 10-10 pencil beam high acceptance high PT forK selection extreme photon veto efficiency photon calorimetry 17

  18. KOPIO KOPIO experiment at BNL: Canada, USA, Russia (INR, IHEP), Japan, Italy, Switzerland - Work in KL center of mass system using TOF - Microbunched, large angle, low energy beam - Measure photon direction - Efficient photon detection KL p0nn at BNL pK 0.7 GeV/c flat beam 18

  19. KOPIO detector = 500 sr, E = (2-3)%/E(GeV),  = 20-30 mrad, z  15 cm, t  50ps/E(GeV), photon veto  18X0,,  inefficiency  2x10-4 19

  20. Photon and charged particle veto Main backgrounds KL p0 p0and KL p- e+ng Br  10-3 Br  1.3x10-2 Two photons missed charged particle missed second photon created 0 inefficiency  10-4 x 10-4 = 10-8 20

  21. KOPIO acceptance and backgrounds • KL p0nn at the SM rate 40 • KL p0 p0 12.4 • KL pe 4.5 • KL p+ p-p0 1.7 • KL pe 0.02 • KL   0.02 •  p0 n 0.01 nA p0 X 0.2 Accidentals 0.6 Total background 19.5 Acceptance toKL p0nn 1% KOPIO goal: B/B  20%    10% at S/B = 2 21

  22. KOPIO 3D 22

  23. Conclusion and perspectives K pnn - a useful probe of new physics Theory Experiment K+  p+nn (7.7 ± 1.1)x10-11 (14.7 + 13.0 – 8.9) x 10-11 KL p0nn (2.6 ± 1.2)x10-11  5.9x10-7 (90% c.l.) Perspectives:E949 doubles sensitivity next year final result 10 events (?) CKM at FNAL 100 events (?) KOPIO 40 events 23

More Related