1 / 38

TeVγ 線天文学の現状と将来

TeVγ 線天文学の現状と将来. 森 正樹 東京大学宇宙線研究所. 「高エネルギー宇宙物理学の現状と将来」 2000 年 9 月 29-30 日 大阪大学. Cherenkov telescope. Cherenkov light from gamma-ray showers Lateral distribution & Timing distribution. Konopelko, TMACD-V, 1999. Imaging Cherenkov technique. γ. p.

liora
Download Presentation

TeVγ 線天文学の現状と将来

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TeVγ線天文学の現状と将来 森 正樹 東京大学宇宙線研究所 「高エネルギー宇宙物理学の現状と将来」 2000年9月29-30日 大阪大学

  2. Cherenkov telescope Cherenkov light from gamma-ray showers Lateral distribution & Timing distribution Konopelko, TMACD-V, 1999

  3. Imaging Cherenkov technique γ p

  4. Satellite vs Ground-based gamma-ray telescope

  5. Cherenkov telescopes in the world (終了)

  6. TeV gamma-ray source catalog T.C. Weekes, Heidelberg WS, 2000

  7. TeV gamma-ray sky

  8. GeV gamma-ray sky Third EGRET catalog E > 100 MeV

  9. Crab nebula • Unpulsed spectrum Aharonian & Atoyan, astro-ph/9803091 / Heidelberg WS, 2000 synchrotron IC

  10. Crab pulsar spectrum: where is the cutoff? Musquere, 26th ICRC, 1999

  11. Supernova remnant: SN1006 T. Naito

  12. SNR: SN1006 - interpretation Naito et al. Astron. Nach. 320, 1999 • Synch+IC • Only IC? • No pro-tons?

  13. Supernova remnant: Cas A Goret et al. 26th ICRC OG2.2.18, 1999 ●HEGRA2000

  14. Supernova remnant: RXJ1713 Muraishi et al., A&Ap 354, 2000 RXJ1713.7-3946 “SN1006 Jr.” CANGAROO Tomida, Ph.D., 1999

  15. AGN: Mrk 421 (April 1998) Maraschi et al. ApJL 526, 1999 Whipple • Rapid variability:Faster at TeV? BeppoSAX BeppoSAX

  16. AGN: Mrk 421 spectrum Takahashi et al. astro-ph/0008505 • Synchrotron+ inverse Comptonmodel synchrotron inverse compton One-zone SSC model δ=14, B=0.14G

  17. AGN: TeV gamma-ray absorption by IR background Mean free path for e+e- pair production IR Background Protheroe et al. astro-ph/0005349

  18. AGN: Mrk 501 spectrum Crisis?↓ Protheroe et al. astro-ph/0005349 Aharonian et al. A&Ap 349, 1999

  19. Next generation projects

  20. H.E.S.S. (High Energy Stereoscopic System) 23o16'18'' S 16o30'00'' E 1800 m a.s.l.

  21. H.E.S.S. telescope • 16 (4 init.) telescopes(120m spacing) • Davies-Cotton design, F/0.8 (f=15m), 108m2 mirror area(382 x 60cm) • Camera:960 x 29mm (0.16°) PMTs, 5° FOV, 600kg • Readout: 1GHz FADC • Total 52 ton each

  22. VERITAS (Very Energetic Radiation Imaging Telescope Array System) Mt. Hopkins, AZ (Montosa canyon or north site) 23o N 111o W >2000 m a.s.l.

  23. VERITAS telescope • 7 telescopes (80m spacing) • Reflector: Davies-Cotton design, D=10m (78.6m2), f=12m, 244x 60cm hexagonal mirrors (glass) • Camera: 499x 1” PMTs (0.15o spacing), 3.5o FOV • Readout: 500MHz FADC? (This is the present 10m telescope: new design not available!)

  24. MAGIC (MajorAtmosphericGamma-rayImagingCherenkovTelescope) La Palma, Canary Island 28.75o N 17.89o W 2200 m a.s.l.

  25. MAGIC telescope • Reflector: parabolic, D=17m (234m2), f=17m, 976x (50x50cm2) Al mirrors • Camera: [classical] 397x 1” PMTs (0.10o )+ 126x 1.5” PMTs (0.20o), 3.5o FOV, ~100kg [standard] HPDs (center) + PMTs • First Light in Summer 2001 (June 21, 2001)

  26. CANGAROO-III 31o06' S 136o47' E 160 m a.s.l. Woomera, South Australia

  27. CANGAROO-III telescope • 4 telescopes (100m spacing) • Parabola reflector consisting of 114 mirrors of 80cmφ(57m2), f=8m, F/0.8 • Camera: 4FOV, 427x 3/4”PMTs (0.16, Hamamatsu R3478UV, TTS 0.36ns) • Readout: q-ADC & TDC

  28. Sensitivity of Cherenkov telescopes Major backgrounds: p: CR proton e: CR electron : CR muon NSB: night sky background VERITAS, ICRC1999

  29. Expected sensitivity

  30. Monitoring the gamma-ray sky ⇒? ⇒? ⇒?

  31. Future trends • Lowering energy threshold (→5 GeV)Larger light collectorHigher altitude • Increasing FOV (→1 sr)“All-sky” TeV gamma-ray monitor

  32. High altitude Cherenkov telescope • High altitude→higher photon density→lower energy→high statistics/overlapping to satellites

  33. Cherenkov light density at high altitude γ p Aharonian et al. astro-ph/0006163

  34. Sensitivity of 4×50m2 telescope array at 5km a.s.l. (e.g. Atacama) Aharonian et al. astro-ph/0006163

  35. All-sky TeV gamma-ray monitor • 5 mφ, 1 sr telescope, 1 TeV threshold・ CR rate (>1 TeV):8・10-6cm-2s-1 × 3・108cm2 = 3 kHz・ Muons (>1 GeV):7・10-3cm-1s-1 × 2・105cm2 = 1.4 kHz・ High threshold to reduce N.S.B.・ 0.1o resolution camera (many channels…)・ Stereo if necessary・ Good monitor for GRBs • Not far away from the present technology! Kifune and Takahashi, TMACD-IV, 1997

  36. All-sky monitor optics • EUSO/OWL type large FOV optics ↑ □ movable camera? ↓ EUSO proposal, 2000

  37. Science to come • Plerions (pulsar nebula)Inverse Compton? ←synchrotron origin? • PulsarsCutoff in pulse component? ← polar cap/outer gap • SNRsπ0 contribution? ← cosmic ray origin • AGNsGamma-ray source: e± or p?Intergalactic IR ← cosmology • EGRET unIDs, Neutralinos, GRBs, QG,Diffuse gamma,…, and more?

  38. Gamma-rays and cosmic-rays T. Kifune, 2000

More Related