1 / 3

矩阵乘积的行列式

矩阵乘积的行列式. 几何观点 矩阵 A 决定 线性变换 f: X AX 所有图形的 n 维体积变为原来的 detA 倍 . g:Y BY. n 维体积  detB 倍 . gf: X(BA)X, n 维体积  原来的 det(BA) 倍 = (detB)(detA) 倍. 代数证明. B AB, det(AB)= a detB 情况 1. A 是初等矩阵 : A: 互换两行 , a= -1=det A A: 某行乘 l 倍 , a= l =det A A: 某行的 l 倍加到另一行 , a=1=detA

livvy
Download Presentation

矩阵乘积的行列式

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 矩阵乘积的行列式 几何观点 矩阵A决定线性变换f: XAX 所有图形的n维体积变为原来的 detA倍. g:YBY. n维体积 detB倍. gf: X(BA)X, n维体积 原来的det(BA)倍 = (detB)(detA)倍.

  2. 代数证明 BAB, det(AB)= a detB 情况1. A是初等矩阵: A:互换两行, a= -1=det A A:某行乘l倍, a=l=det A A:某行的l倍加到另一行, a=1=detA 情况2. A不可逆: detA=0, AB不可逆, det(AB)=0=(detA)(detB).

  3. 代数证明 情况3.A可逆. A= Ps…P2P1 , 其中 Ps , …, P2, P1是初等矩阵 det(AB)=det Ps…detP2 detP1 detB (1) 取 B=I 得 detA = det Ps…detP2 detP1 代入(1) 得 det(AB) = (detA)(detB)

More Related