70 likes | 370 Views
a. Because 240º is 60º more than 180º , the terminal side is 60º counterclockwise past the negative x -axis. EXAMPLE 1. Draw angles in standard position. Draw an angle with the given measure in standard position. a. 240º. SOLUTION.
E N D
a. Because 240º is 60º more than 180º, the terminal side is 60º counterclockwise past the negative x-axis. EXAMPLE 1 Draw angles in standard position Draw an angle with the given measure in standard position. a.240º SOLUTION
b. Because 500º is 140º more than 360º, the terminal side makes one whole revolution counterclockwise plus 140º more. EXAMPLE 1 Draw angles in standard position Draw an angle with the given measure in standard position. b. 500º SOLUTION
c. Because –50º is negative, the terminal side is 50º clockwise from the positive x-axis. EXAMPLE 1 Draw angles in standard position Draw an angle with the given measure in standard position. c. –50º SOLUTION
There are many such angles, depending on what multiple of 360º is added or subtracted. EXAMPLE 2 Find coterminal angles Find one positive angle and one negative angle that are coterminal with (a) –45º and (b) 395º. SOLUTION a. –45º + 360º = 315º –45º – 360º = – 405º
= –325º EXAMPLE 2 Find coterminal angles b. 395º – 360º = 35º 395º – 2(360º)
1. 65° 2. 230° for Examples 1 and 2 GUIDED PRACTICE Draw an angle with the given measure in standard position. Then find one positive coterminal angle and one negative coterminal angle. 425º, –295º 590º, –130º
3. 300° 4. 740° for Examples 1 and 2 GUIDED PRACTICE 660º, –60º 20º, –340º