300 likes | 459 Views
Parallel and Distributed Processing CSE 8380. January 27 2005 Session 5. Contents. Dynamic Networks Bus based systems Switch based systems. Interconnection Network. Dynamic. Static. Bus-based. Switch-based. 1-D. 2-D. HC. Crossbar. Single. Multiple. SS. MS.
E N D
Parallel and Distributed ProcessingCSE 8380 January 27 2005 Session 5
Contents • Dynamic Networks • Bus based systems • Switch based systems
Interconnection Network Dynamic Static Bus-based Switch-based 1-D 2-D HC Crossbar Single Multiple SS MS
Dynamic Network Analysis Parameters: • Cost • Delay: latency • Blocking characteristics • Fault tolerance
C C C P P P P P P Bus Based IN Global Memory Global Memory
Dynamic Interconnection Networks • Communication patterns are based on program demands • Connections are established on the fly during program execution • Multistage Interconnection Network (MIN) and Crossbar
Switch Modules • A x B switch module • A inputs and B outputs • In practice, A = B = power of 2 • Each input is connected to one or more outputs (conflicts must be avoided) • One-to-one (permutation) and one-to-many are allowed
2x2 Switch Binary Switch Legitimate States = 4 Permutation Connections = 2
Straight Exchange Upper-broadcast Lower-broadcast The different setting of the 2X2 SE Legitimate Connections
Group Work General Case ??
Multistage Interconnection Networks ISC Inter-stage Connection Patterns ISC1 ISC2 ISCn switches switches switches
Perfect-Shuffle Routing Function • Given x = {an, an-1, …, a2, a1} • P(x) = {an-1, …, a2, a1 , an} X =110001 P(x) = 100011
Perfect Shuffle Example 000 000 001 010 010 100 011 110 100 001 101 011 110 101 111 111
000 000 001 001 010 010 011 011 100 100 101 101 110 110 111 111 Perfect-Shuffle
Exchange Routing Function • Given x = {an, an-1, …, a2, a1} • Ei(x) = {an, an-1, …, ai, …, a2, a1} X = 0000000 E3(x) = 0000100
Exchange E1 000 001 001 000 010 011 011 010 100 101 101 100 110 111 111 110
000 000 001 001 010 010 011 011 100 100 101 101 110 110 111 111 Exchange E1
Butterfly Routing Function • Given x = {an, an-1, …, a2, a1} • B(x) = {a1 , an-1, …, a2, an} X =010001 P(x) = 110000
Butterfly Example 000 000 001 100 010 010 011 110 100 001 101 101 110 011 111 111
000 000 001 001 010 010 011 011 100 100 101 101 110 110 111 111 Butterfly
Multi-stage network 000 000 001 001 010 010 011 011 100 100 101 101 110 110 111 111
MIN (cont.) An 8X8 Banyan network
Min Implementation Control (X) Source (S) Destination (D) X = f(S,D)
A C A C B D B D X = 0 X = 1 ( ) ) crossed (straight Example
stage 2 stage 1 stage 3 Consider this MIN D1 S1 D2 S2 S3 D3 D4 S4 D5 S5 D6 S6 D7 S7 S8 D8
Example (Cont.) • Let control variable be X1, X2, X3 • Find the values of X1, X2, X3 to connect: • S1 D6 • S7 D5 • S4 D1
The 3 connections stage 2 stage 1 stage 3 D1 S1 D2 S2 S3 D3 D4 S4 D5 S5 D6 S6 D7 S7 S8 D8
Boolean Functions • X = x1, x2, x3 • S = s2, s2, s3 • D = d1, d2, d3 • Find X = f(S,D)
M1 M2 M3 M4 M5 M6 M7 M8 P1 P2 P3 P4 P5 P6 P7 P8 Crossbar Switch