1 / 36

Center of Mass and Rotational Motion: Fundamentals and Applications

Explore the concepts of center of mass, angular velocity, acceleration, kinetic energy of rotation, and moments of inertia, along with practical examples and calculations in rotational motion.

llyon
Download Presentation

Center of Mass and Rotational Motion: Fundamentals and Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The center of mass of a system of masses is the point where the system can be balanced in a uniform gravitational field.

  2. Center of Mass for Two Objects Xcm = (m1x1 + m2x2)/(m1 + m2) = (m1x1 + m2x2)/M

  3. Locating the Center of Mass In an object of continuous, uniform mass distribution, the center of mass is located at the geometric center of the object. In some cases, this means that the center of mass is not located within the object.

  4. Suppose we have several particles A, B, etc., with masses mA, mB, …. Let the coordinates of A be (xA, yA), let those of B be (xB, yB), and so on. We define the center of mass of the system as the point having coordinates (xcm,ycm) given by xcm = (mAxA + mBxB + ……….)/(mA + mB + ………), Ycm = (mAyA + mByB +……….)/(mA + mB + ………).

  5. a=1m

  6. The velocity vcm of the center of mass of a collection of particles is the mass-weighed average of the velocities of the individual particles: vcm = (mAvA + mBvB + ……….)/(mA + mB + ………). In terms of components, vcm,x = (mAvA,x + mBvB,x + ……….)/(mA + mB + ………), vcm,y = (mAvA,y + mBvB,y + ……….)/(mA + mB + ………).

  7. For a system of particles, the momentum P of the center of mass is the total mass M = mA + mB +…… times the velocity vcm of the center of mass: Mvcm = mAvA + mBvB + ……… = P It follows that, for an isolated system, in which the total momentum is constant the velocity of the center of mass is also constant.

  8. CHAPTER 9 ROTATIONAL MOTION

  9. Goals for Chapter 9 • To study angular velocity and angular acceleration. • To examine rotation with constant angular acceleration. • To understand the relationship between linear and angular quantities. • To determine the kinetic energy of rotation and the moment of inertia. • To study rotation about a moving axis.

  10. Angular displacement : Δθ (radians, rad). • Before, most of us thought “in degrees”. • Now we must think in radians. Where 1 radian = 57.3o or 2p radians=360o .

  11. Unit: rad/s2

  12. Comparison of linear and angular For linear motion with constant acceleration For a fixed axis rotation with constant angular acceleration a = constant v = vo + at x = xo + vot + ½at2 v2 = vo2 + 2a(x-xo) x–xo = ½(v+vo)t α = constant ω = ωo + αt Θ = Θo + ωot + ½ αt2 ω2 = ωo2 + 2α(Θ-Θo) Θ-Θo= ½(ω+ωo)t

  13. An electric fan is turned off, and its angular velocity decreases • uniformly from 500  rev/min to 200 rev/min in 4.00 s . • Find the angular acceleration in rev/s2 and the number of • revolutions made by the motor in the 4.00 s interval. • b) The number of revolutions made in 4.00n s • c) How many more seconds are required for the fan to come • to rest if the angular acceleration remains constant at the • value calculated in part A?

  14. Relationship Between Linear and Angular Quantities

  15. v = rω atan = rα arad = rω2

  16. Kinetic Energy and Moment of Inertia

  17. Kinetic Energy of Rotating Rigid BodyMoment of Inertia KA = (1/2)mAvA2 vA = rAω vA2 = rA2ω2 KA = (1/2)(mArA2)ω2 KB = (1/2)(mBrB2)ω2 KC = (1/2)(mCrC2)ω2 .. K = KA + KB + KC + KD …. K = (1/2)(mArA2)ω2 + (1/2)(mBrB2)ω2 ….. K = (1/2)[(mArA2) + (mBrB2)+ …] ω2 K = (1/2) I ω2 I = mArA2 + mBrB2 + mCrC2) + mDrD2 + … Unit: kg.m2 A rA B rB C rC

  18. Rotational energy

  19. Moments of inertia & rotation

  20. Rotation about a Moving Axis • Every motion of a rigid body can be represented as a combination of motion of the center of mass (translation) and rotation about an axis through the center of mass • The total kinetic energy can always be represented as the sum of a part associated with motion of the center of mass (treated as a point) plus a part associated with rotation about an axis through the center of mass

  21. Total Kinetic Energy Ktotal = (1/2)Mvcm2 + (1/2)Icmω2

  22. Race of the objects on a ramp

  23. A rotation while the axis moves

More Related