1 / 28

Info Vis: Multi-Dimensional Data

Info Vis: Multi-Dimensional Data. Chris North cs3724: HCI. Presentations. jerome holman john gibson Vote: UI Hall of Fame/Shame?. Quiz. Why visualization? Class motto:. Visualization Design Principles. Increase Data Density. Calculate data/pixel.

loe
Download Presentation

Info Vis: Multi-Dimensional Data

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Info Vis:Multi-Dimensional Data Chris North cs3724: HCI

  2. Presentations • jerome holman • john gibson • Vote: UI Hall of Fame/Shame?

  3. Quiz • Why visualization? • Class motto:

  4. VisualizationDesign Principles

  5. Increase Data Density • Calculate data/pixel “A pixel is a terrible thing to waste.”

  6. Eliminate “Chart Junk” • How much “ink” is used for non-data? • Reclaim empty space (% screen empty) • Attempt simplicity(e.g. am I using 3djust for coolness?)

  7. Information Visualization Mantra • Overview first, zoom and filter, then details on demand • Overview first, zoom and filter, then details on demand • Overview first, zoom and filter, then details on demand • Overview first, zoom and filter, then details on demand • Overview first, zoom and filter, then details on demand • Overview first, zoom and filter, then details on demand

  8. InfoVis Design Principles • Increase data density • Eliminate “chart junk” • Mantra: Overview first, zoom&filter, details on demand • Insight factor • Does the design reveal the data? • Does the design help me explore, learn, understand? • Show me the data!

  9. Visualizing Multi-dimensional data

  10. Multi-dimensional Data Table Attributes (aka: dimensions, fields, variables, columns, …) • Data Values • Data Types: • Quantitative • Ordinal • Categorical/Nominal Items (aka: data points, records,tuples, rows, …)

  11. Basic Visualization Model Data Visual Mapping Visualization Interaction

  12. Visual Mapping • Map: data items  visual marks • Visual marks: • Points • Lines • Areas • Volumes

  13. Visual Mapping • Map: data items  visual marks • Map: data item attributes  visual mark attributes • Visual mark attributes: • Position, x, y • Size, length, area, volume • Orientation, angle, slope • Color, gray scale, texture • Shape

  14. Example • Hard drives for sale: • price ($), capacity (MB), quality rating (1-5) p c

  15. Example: Spotfire • Film database • Year  X • Length  Y • Popularity  size • Subject  color • Award?  shape

  16. Ranking Visual Attributes • Position • Length • Angle, Slope • Size • Color Increased accuracy for quantitative data -W.S. Cleveland Color better for categorical data -J. Mackinlay

  17. Basic Charts…

  18. Factors in Visualization Design • User tasks • Data • Data scale: • # recs • # attrs • # possible data values

  19. Data Scale • # of attributes (dimensionality) • # of items • # of possible values (e.g. bits/value)

  20. Spotfire • Multiple views: brushing and linking • Dynamic Queries • Details window

  21. TableLens (Eureka by Inxight) • Visual encoding of cell values, sorting • Details expand within context

  22. Parallel Coordinates • Bag cartesian orthogonal layout • Parallel axes • Data point = connected line segment • (0, 1, -1, 2) = x y z w 0 0 0 0

  23. Parallel Coordinates (XmdvTool)

  24. Parallel Coordinates

  25. Info. Vis. Topics • Information types: • Multi-dimensional: databases,… • 1D, 2D, 3D • Trees, Graphs • Text, document collections • Interaction strategies: • Overview+Detail • Focus+Context • Zooming • How (not) to lie with visualization

  26. Homework #2: Info. Vis. Tools • Get some data: • Tabular, >=5 attributes (columns), >=500 items (rows) • Use 2 visualization tools + Excel: • Spotfire, TableLens, Parallel Coordinates • Mcbryde 104c • 2 page report: • Discoveries in data • Comparison of tools • Due: • Feb 19: A-K • Feb 21: L-Z

  27. Project 2: Java • 3 students per team • Ambitious project • 0: form team (feb 14) • 1: design (feb 28) • 2: initial implementation (mid march) • 3: final implementation (end march)

  28. Next Presentations: proj1 design, UI critique • Thurs: john randal, tom shultz • Next Tues: mohamed hassoun, aaron dalton • Next Thurs: nadine edwards, steve terhar

More Related