330 likes | 656 Views
MIPS Assembly Language. Chapter 15 S. Dandamudi. MIPS architecture Registers Addressing modes MIPS instruction set Instruction format Data transfer instructions Arithmetic instructions Logical/shift/rotate/compare instructions Branch and jump instructions. SPIM system calls
E N D
MIPS Assembly Language Chapter 15 S. Dandamudi
MIPS architecture Registers Addressing modes MIPS instruction set Instruction format Data transfer instructions Arithmetic instructions Logical/shift/rotate/compare instructions Branch and jump instructions SPIM system calls SPIM assembler directive Illustrative examples Procedures Stack implementation Illustrative examples Outline S. Dandamudi
MIPS Processor Architecture • MIPS follows RISC principles much more closely than PowerPC and Itanium • Based on the load/store architecture • Registers • 32-general purpose registers ($0 – $31) • $0 – hardwired to zero • $31 – used to store return address • Program counter (PC) • Like IP in Pentium • Two special-purpose registers (HI and LO) • Used in multiply and divide instructions S. Dandamudi
MIPS Processor Architecture (cont’d) S. Dandamudi
MIPS Processor Architecture (cont’d) MIPS registers and their conventional usage S. Dandamudi
MIPS Processor Architecture (cont’d) MIPS addressing modes • Bare machine supports only a single addressing mode disp(Rx) • Virtual machine provides several additional addressing modes S. Dandamudi
Memory Usage Placement of segments allows sharing of unused memory by both data and stack segments S. Dandamudi
Instruction Format load, arithmetic/logical with immediate operands Higher order bits from PC are added to get absolute address S. Dandamudi
MIPS Instruction Set • Data transfer instructions • Load and store instructions have similar format ld Rdest,address • Moves a byte from address to Rdest as a signed number • Sign-extended to Rdest • Use ldu for unsigned move (zero-extended) • Use lh, lhu, ld for moving halfwords (signed/unsigned) and words • Pseudoinstructions la Rdest,address li Rdest,imm • Implemented asori Rdest,$0,imm S. Dandamudi
MIPS Instruction Set (cont’d) • Store byte sb Rsrc,address • Use sh and sw for halfwords and words • Pseudoinstruction move Rdest,Rsrc • Copies Rsrc to Rdest • Four additional data movement instructions are available • Related to HI and LO registers • Used with multiply and divide instructions • Discussed later S. Dandamudi
MIPS Instruction Set (cont’d) • Arithmetic instructions • Addition add Rdest,Rsrc1,Rsrc2 • Rdest Rsrc1 + Rsrc2 • Numbers are treated as signed integers • Overflow: Generates overflow exception • Use addu if the overflow exception is not needed addi Rdest,Rsrc1,imm • imm: 16-bit signed number • Pseudoinstruction add Rdest,Rsrc1,Src2 Register or imm16 S. Dandamudi
MIPS Instruction Set (cont’d) • Subtract sub Rdest,Rsrc1,Rsrc2 • Rdest Rsrc1 - Rsrc2 • Numbers are treated as signed integers • Overflow: Generates overflow exception • Use subu if the overflow exception is not needed • No immediate version • Use addi with negative imm • Pseudoinstruction sub Rdest,Rsrc1,Src2 Register or imm16 S. Dandamudi
MIPS Instruction Set (cont’d) • Pseudoinstructions neg Rdest,Rsrc • Negates Rsrc (changes sign) • Implemented as sub Rdest,$0,Rsrc abs Rdest,Rsrc • Implemented as bgez Rsrc,skip sub Rdest,$0,Rsrc skip: Constant 8 is used S. Dandamudi
MIPS Instruction Set (cont’d) • Multiply • mult (signed) • multu (unsigned) mult Rsrc1,Rsrc2 • 64-bit result in LO and HI registers • Special data move instructions for LO/HI registers mfhi Rdest mflo Rdest • Pseudoinstruction mul Rdest,Rsrc1,Rsrc2 • 32-bit result in Rdest • 64-bit result is not available Register or imm S. Dandamudi
MIPS Instruction Set (cont’d) • mul is implemented as • If Rsrc2 is a register mult Rsrc1,Src2 mflo Rdest • If Rsrc2 is an immediate value (say 32) ori $1,$0,32 mult $5,$1 mflo $4 a0 = $4 a1 = $5 at = $1 S. Dandamudi
MIPS Instruction Set (cont’d) • Divide • div (signed) • divu (unsigned) div Rsrc1,Rsrc2 • Result = Rsrc1/Rsrc2 • LO = quotient, HI = remainder • Result undefined if the divisor is zero • Pseudoinstruction div Rdest,Rsrc1,Src2 • quotient in Rdest rem Rdest,Rsrc1,Src2 • remainder in Rdest Register or imm S. Dandamudi
MIPS Instruction Set (cont’d) • Logical instructions • Support AND, OR, XOR, NOR and Rdest,Rsrc1,Rsrc2 andi Rdest,Rsrc1,imm16 • Also provides or, ori, xor, xori, nor • No not instruction • It is provided as a pseudoinstruction not Rdest,Rsrc • Implemented as nor Rdest,Rsrc,$0 S. Dandamudi
MIPS Instruction Set (cont’d) • Shift instructions • Shift left logical sll Rdest,Rsrc1,count • Vacated bits receive zeros • Shift left logical variable sllv Rdest,Rsrc1,Rsrc2 • Shift count in Rsrc2 • Two shift right instructions • Logical (srl, srlv) • Vacated bits receive zeros • Arithmetic (sra, srav) • Vacated bits receive the sign bit (sign-extended) S. Dandamudi
MIPS Instruction Set (cont’d) • Rotate instructions • These are pseudoinstructions rol Rdest,Rsrc1,Src2 ror Rdest,Rsrc1,Src2 • Example: ror $t2,$t2,31 is translated as sll $1,$10,31 srl $10,$10,1 or $10,$10,$1 t2 = $10 S. Dandamudi
MIPS Instruction Set (cont’d) • Comparison instructions • All are pseudoinstructions slt Rdest,Rsrc1,Rsrc2 • Sets Rdest to 1 ifRsrc1 < Rsrc2 • Unsigned version: sltu • Others: • seq • sgt, sgtu • sge, sgeu • sle, sleu • sne S. Dandamudi
MIPS Instruction Set (cont’d) • Comparison instructions • Example: seq $a0,$a1,$a2 is translated as beq $6,$5,skip1 ori $4,$0,0 beq $0,$0,skip2 skip1: ori $4,$0,1 skip2: a0 = $4 a1 = $5 a2 = $6 S. Dandamudi
MIPS Instruction Set (cont’d) • Branch and Jump instructions • Jump instruction j target • Uses 26-bit absolute address • Branch pseudoinstruction b target • Uses 16-bit relative address • Conditional branches beq Rsrc1,Rsrc2,target • Jumps to target if Rsrc1 = Rsrc2 S. Dandamudi
MIPS Instruction Set (cont’d) • Other branch instructions bne blt, bltu bgt, bgtu ble, bleu bge, bgeu • Comparison with zero beqz Rsrc,target • Branches to target ifRsrc = 0 • Others • bnez, bltz, bgtz, blez, bgez • b target is implemented as bgez $0,target S. Dandamudi
SPIM System Calls • SPIM supports I/O through syscall • Data types: • string, integer, float, double • Service code: $v0 • Required arguments: $a0 and $a1 • Return value: $v0 • print_string • Prints a NULL-terminated string • read_string • Takes a buffer pointer and its size n • Reads at most n-1 characters in NULL-terminated string • Similar to fgets S. Dandamudi
SPIM System Calls (cont’d) S. Dandamudi
SPIM System Calls (cont’d) .DATA prompt: .ASCIIZ “Enter your name: “ in-name: .SPACE 31 .TEXT . . . la $a0,prompt li $v0,4 syscall la $a0,in_name li $a1,31 li $v0,8 syscall S. Dandamudi
SPIM Assembler Directives • Segment declaration • Code: .TEXT .TEXT<address> • Data: .DATA • String directives • .ASCII • Not NULL-terminated • .ASCIIZ • Null-terminated • Uninitialized space .SPACE n Optional; if present, segment starts at that address Example: ASCII “This is a very long string” ASCII “spread over multiple ASCIIZ “string statements.” S. Dandamudi
SPIM Assembler Directives (cont’d) • Data directives • Provides four directives: • .HALF, .WORD • .FLOAT, .DOUBLE .HALF h1, h2, . . ., hn • Allocates 16-bit halfwords • Use .WORD for 32-bit words • Floating-point numbers • Single-precision .FLOAT f1, f2, . . . , fn • Use .DOUBLE for double-precision S. Dandamudi
SPIM Assembler Directives (cont’d) • Miscellaneous directives • Data alignment • Default: • .HALF,.WORD,.FLOAT,.DOUBLE align data • Explicit control: .ALIGN n aligns the next datum on a 2n byte boundary • To turn off alignment, use .ALIGN 0 • .GLOBL declares a symbol global .TEXT .GLOBL main main: . . . S. Dandamudi
Illustrative Examples • Character to binary conversion • binch.asm • Case conversion • toupper.asm • Sum of digits – string version • addigits.asm • Sum of digits – number version • addigits2.asm S. Dandamudi
Procedures • Two instructions • Procedure call • jal (jump and link) jal proc_name • Return from a procedure jr $ra • Parameter passing • Via registers • Via the stack • Examples • min-_max.asm • str_len.asm S. Dandamudi
Stack Implementation • No explicit support • No push/pop instructions • Need to manipulate stack pointer explicitly • Stack grows downward as in Pentium • Example: push registers a0 and ra sub $sp,$sp,8 #reserve 8 bytes of stack sw $a0,0($sp) #save registers sw $ra,4($sp) • pop operation lw $a0,0($sp) #restore registers lw $a0,4($sp) addu $sp,$sp,8 #clear 8 bytes of stack S. Dandamudi
Illustrative Examples • Passing variable number of parameters to a procedure var_para.asm • Recursion examples Factorial.asm Quicksort.asm Last slide S. Dandamudi