1 / 28

Testing non-identifying restrictions on the long-run relations

Testing non-identifying restrictions on the long-run relations. Specify either the number of free parameters or the number of restrictions. The LR test statistic:. How many ’same restrictions’ can we impose on β ? When the test rejects!. TEST FOR EXCLUSION: LR-test, Chi-Square(r)

loman
Download Presentation

Testing non-identifying restrictions on the long-run relations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Testing non-identifying restrictions on the long-run relations

  2. Specify either the number of free parameters or the number of restrictions

  3. The LR test statistic:

  4. How many ’same restrictions’ can we impose on β? • When the test rejects!

  5. TEST FOR EXCLUSION: LR-test, Chi-Square(r) r DGF ChiSq5 LM3R DPY RM LYR RB DS831 1 1 3.84 7.10 17.87 0.28 1.05 2.09 0.10 (0.01) (0.00) (0.60) (0.31) (0.15) (0.75) 2 2 5.99 12.36 23.17 0.92 5.63 3.10 3.52 (0.00) (0.00) (0.63) (0.06) (0.21) (0.17) 3 3 7.81 24.71 38.24 14.99 17.63 14.77 18.47 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 4 4 9.49 32.53 46.95 22.84 22.55 22.90 24.90 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

  6. LM3R LYR DPY RM RB DS831 TREND Beta1 0.07 -0.03 1.00-0.29 0.57 -0.00 0.00 Beta2 1.00 -1.02 -3.45 -8.51 8.00 -0.24 -0.00 Beta3 -0.00 0.02 0.02 1.00 -0.62 -0.01 -0.00 Alpha1 Alpha2 Alpha3 DLM3R -1.05 -0.15 1.18 (-2.56) (-3.95) (1.11) DLYR -0.06 0.05 -1.54 (-0.26) (2.10) (-2.42) DDPY -0.71 0.04 -0.30 (-5.05) (2.77) (-0.84) DRM 0.02 -0.00 -0.10 (0.92) (-1.84) (-2.14) DRB 0.02 0.00 0.16 (0.81) (0.90) (2.47)

  7. PI matrix: LM3R LYR DPY RM RB DS831 TREND DLM3R -0.23 0.22 -0.50 2.80 -2.56 0.03 0.00 (-4.78) (4.47) (-1.15) (2.51) (-3.35) (2.91) (0.60) DLYR 0.05 -0.09 -0.26 -1.93 1.31 -0.00 0.00 (1.78) (-2.89) (-1.00) (-2.90) (2.86) (-0.46) (0.46) DDPY -0.01 -0.02 -0.84 -0.41 0.08 -0.01 -0.00 (-0.50) (-1.23) (-5.69) (-1.07) (0.31) (-1.56) (-2.77) DRM -0.00 0.00 0.03 -0.08 0.05 0.00 0.00 (-0.81) (0.08) (1.35) (-1.58) (1.36) (2.63) (2.96) DRB 0.00 0.00 0.02 0.13 -0.07 -0.00 -0.00 (0.99) (0.36) (0.60) (1.98) (-1.51) (-2.12) (-2.05)

  8. Testing hypotheses on a single beta relation • Counting degrees of freedom of the restricted vector • r-1 restrictions and 1 normalization without testing • additional restrictions change the likelihood function

  9. Testing stationarity of a known relations

  10. Tests of stationarity around a constant mean TEST FOR STATIONARITY: LR-test, Chi-Square(6-r) r DGF ChiSq5 LM3R DPY RM LYR RB 1 5 11.07 48.23 36.31 46.18 47.85 49.25 (0.00) (0.00) (0.00) (0.00) (0.00) 2 4 9.49 28.46 25.50 26.39 28.21 29.49 (0.00) (0.00) (0.00) (0.00) (0.00) 3 3 7.81 23.21 21.10 21.13 23.01 24.18 (0.00) (0.00) (0.00) (0.00) (0.00) 4 2 5.99 9.97 9.09 10.01 9.79 10.12 (0.01) (0.01) (0.01) (0.01) (0.01)

  11. Some coefficients needs to be estimated

  12. The switching algoritm

  13. The LR test:

  14. Tests of stationarity allowing for a shift in the mean at 1983 TEST FOR STATIONARITY: LR-test, Chi-Square(5-r) r DGF ChiSq5 LM3R DPY RM LYR RB 1 4 9.49 37.97 17.72 43.92 44.29 39.81 (0.00) (0.00) (0.00) (0.00) (0.00) 2 3 7.81 19.24 9.13 25.28 24.90 20.62 (0.00) (0.03) (0.00) (0.00) (0.00) 3 2 5.99 17.03 8.98 20.58 20.32 16.75 (0.00) (0.01) (0.00) (0.00) (0.00) 4 1 3.84 8.69 5.81 7.30 9.38 5.93 (0.00) (0.02) (0.01) (0.00) (0.01)

  15. Testing hypotheses on a single beta relation Example H26: Homogeneity between interest rates and inflation

More Related